
AD-AOB6 50 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/G 9/2
BUILDING PROGRAM MODELS INCREMENTALLY FROM INFORMAL DESCRIPTION--ETC(U)
OCT 79 B P MCCUNE MDA903-76-C-0206

UNCLASSIFIEO STAN-CS-79-772 NL:IIIIIIIIImbum
lEll~lEllElllI
IIIIIEIIIIIEI
EIIIEEEEEIIEEE
EEEEllEEEEllEE
IIIEEEEEEIIIEE

Stanford Artificial Intelligence Laboratory October 1979
Memo AIM-3

Computer Science DepartmentI
Report No. STAN-CS-79-772

Systems Control, Inc. '-.

Technical R~port SCI.ICS.U.79.2

t Building Program Models Incrementally from Informal Descriptions

by

Brian P. McCune

Research sponsored by

Defense Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT

Stanford University

and

Computer Science Department
Systems Control, Inc.
Palo Alto, California

-,V\

... ~-

r'

SO7 8 025--

UNCLASSI.FIED
SECURITY CL.SSIFICATION OF THIS PAGE (When Data Entered)

EPRT OCUMNTAION AGEREAD INSTRUCTIONS
DOCUENTAION AGEBEFORE COMPLETING FORMW

1. REPORT NjiMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AIN-333 (TAI'-CS-79-772 - A7 _;v' I

4. TITLE (and ubtlTle 5. TYPE OF REPORT & PERIOD COVERED

Building Program Models Incrementally from Informal
Descriptions. , technical, October 1979

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR~s) AIM-333 (STAN-CS-79-772(
8. CONTRACT OR GRANJT NUMBERWS

tBrian P? ir~ni D9376cf~

1. MONIORING AGEANCYAIO NAME ADDRESS 10f dROGRA fromNT Controllin OTie)Aclsife

Ofeprmn of aalRserDu ra Sind 16A5R ECLSA&IOUNTONGRAIDING

Stanford University

Sanfrovd, Carlirlea e di4ribtio unlmied

18._EPR SUPLEENAR NOTESGE

19nKYfor DS Con tinoev s e Tiehiqneesr Ondfidentf byS T block. numbeireort

240 ABsTontAvnue, nrArlesiiftncssr Vdidintify by2lok2u0e9

MrD hlpSra Reidn FOreenaMv 15a.2 UNCLASSIIED AINDONRD

16DISBTINF1N 6SOSLETE SECRIT CLSSFIATO OFTISPGE(oertt)ntrd

A(1L roved fo ulcrles*dsrbtinulmtd

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19. KEY WORDS (Continued)

20 ABSTRACT (Continued)

- ' Program acquisition is the transformation of a program specification into an executable, but not
necessarily efficient, program that meets the given specification. This thesis presents a solution to
one aspect of the program acquisition problem: the incremental construction of program models
from informal descriptions. The key to the solution is a framework for incremental program
acquisition that includes .- a formal language for expressing program fragments that contain
informalities, (2f a control structure for the incremental recognition and assimilation of such
fragments, and (Wa knowledge base of rules for acquiring programs specified with informalities.

The thesis describ ,, a LISP based computer system called the Program Model Builder
(a'eiiatedA'PMB"), which receives informal program fragments incrementally and assembles
tlem into a very high level program model that is complete, semantically consistent, unambiguous.
and executable. The program specification comes in the form of partial program fragments that
arrive in any order and may exhibit such informalities as inconsistencies and ambiguous
references. Possible sources of fragments are a natural language parser or a parser for a surface
form of the fragments. PMB produces a program model that is a complete and executable
computer program. The program fragment language used for specifications is a superset of the
language in which program models are built. This program modelling language is a very high
level programming language for symbolic processing that deals with such information structures
as sets and mappings.

The recognition paradigm used by PMB is a form of subgoaling that allows the parts of the
program to be specified in an order chosen by the user, rather than dictated by the system.
Knowledge is represented as a set of data driven antecedent rules of two types, response rules and ' I
demons, which are trinered respectively by either the input of new fragments or changes in the
partial program model. In processing a fragment, a response rule may update the partial program
model and create new subgoals with associated response rules. To process subgoals that are
completely internal to PMB (e.g., model consistency checks), demon rules are created that delay
execution until their prerequisite information in the program model has been filled in by response
rules or perhaps other demons.

PMB has been tested both as a module of the PSI program synthesis system and independently.
Models built as part of PSI have been acquired via natural language dialogs and execution traces
and have been automatically coded into LISP by other PSI modules. PMB has successfully built
a number of moderately complex programs for symbolic computation.

LDDII FOVM OLTSCBACK)JAN 73"X I UNCLASSIFIED

EDITION4 OF I NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

. -. ,i7- :", .- i

Stanford Artificial Intelligence Laboratory October 1979
Memo AIM-333

Computer Science Department
Report No. STAN-CS-79-772

Systems Control, Inc.
Technical Report SCLICS,.U.79..

Building Program Models Incrementally from Informal Descriptions

by

Brian P. McCune

ABSTRACT

Program acquisition is the transformation of a program specification into an executable, but not
necessarily efficient, program that meets the given specification. This thesis presents a solution to
one aspect of the program acquisition problem: the incremental construction of program models
from informal descriptions. The key to the solution is a framework for incremental program
acquisition that includes (1) a formal language for expressing program fragments that contain
informalities, (2) a control structure for the incremental recognition and assimilation of such
fragments, and (3) a knowledge base of rules for acquiring programs specified with informalities.

The thesis describes a LISP based computer system called the Program Model Builder
(abbreviated "PMB*), which receives informal program fragments incrementally and assembles
them into a very high level program model that is complete, semantically consistent, unambiguous,
and executable. The program specification comes in the form of partial program fragments that
arrive in any order and may exhibit such informalities as inconsistencies and ambiguous
references. Possible sources of fragments are a natural language parser or a parser for a surface
form of the fragments. PMB produces a program model that is a complete and executable
computer program. The program fragment language used for specifications is a superset of the
language in which program models are built. This program modelling language is a very high
level programming language for symbolic processing that deals with such information structures
as sets and mappings.

The recognition paradigm used by PMB is a form of subgoaling that allows the parts of the
program to be specified in an order chosen by the user, rather than dictated by the system.
Knowledge is represented as a set of data driven antecedent rules of two types, response rules and
demons, which are triggered respectively by either the input of new fragments or changes in the

'i

partial program model. In processing a fragment, a response rule may update the partial program
model and create new subgoals with associated response rules. To process subgoals that are
completely internal to PMB (e.g., model consistency checks), demon rules are created that delay
execution until their prerequisite information in the program model has been filled in by response
rules or perhaps other demons.

PMB has been tested both as a module of the PSI program synthesis system and Independently.
Models built as part of PSI have been acquired via natural language dialogs and execution traces
and have been automatically coded into LISP by other PSI modules. PMB has successfully buik
a number of moderately complex programs for symbolic computation.

This dissertation was submitted to the Department of Computer Science and the Committee on
Graduate Studies of Stanford University in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

Available from University Microfilms International, P. 0. Box 1346, Ann Arbor, Michigan 48106

0 Copyright 1980

by

Brian Perry McCune

ii|

Acknowledgments

Professor Cordell Green provided his time, encouragement, and many good ideas throu2_hout
the period he was my thesis adviser and leader of the PSI project. The other members of' my
thesis reading committee, Professors Bruce G. Buchanan and Terry Winograd, spent many
hours reading my thesis and discussing it with me in order to crystallize the ideas it contains,
relate them to other work, and help me present them better. The fourth member of my oral
examination committee, Professor Gio Wiederhold, helped teach me what a Ph.D. thesis is and
how to present it to a wider audience than just the artificial intelligence community.

Many other people helped me in various ways during the writing of this thesis. Discussions
with the knowledge based programming group at Systems Control, Inc., helped clarify the
problems addressed by the Program Model Builder and how it relates to the PSI program
synthesis system. Elaine Kant, Thomas T. Pressburger, Stephen J. Westfold, and Michael J.
Clancy provided helpful criticisms of drafts of the thesis.

This work would not have been possible without the ideas, hacking, support, and friendship of J
the entire PSI group at the Stanford Artificial Intelligence Laboratory. Jerrold M. Ginsparg.
Jorge V. Phillips, Louis 1. Steinberg, Stephen J. Westfold, and Ronny van den Heuvel
collaborated on the definition of the program fragment language. David R. Barstow created the
initial specifications of the program modelling language. David R. Barstow, Elaine Kant, Bruce
Nelson, and Juan J. Ludlow helped "debug" the modelling language. Bruce Nelson wrote the
program model interpreter, and Richard E. Pattis enhanced it to parse arbitrary inputs.
Thomas T. Pressburger wrote the program that generates readable program models. Avra
Cohn and Ronny van den Heuvel outlined the types of programming knowledge a program
acquisition system should have. Steve T. Tappel wrote and helped specify the rule expander.

Finally, thanks to Lester D. Earnest and the rest of the hacker/volleyball community at the
Artificial Intelligence Laboratory for making it a fun and productive environment in which to
work. And thanks to my housemates, friends, parents, and relatives for having faith in me and
for putting up with much work and little play for too long.

This thesis describes research done in the Computer Science Department, Systems Control. Inc.,
and the Artificial Intelligence Laboratory, Stanford University. The research was supported in
part by the Defense Advanced Research Projects Agency under DARPA Order 3687, Contract
N00014-79-C-0127, which is monitored by the Office of Naval Research, and DARPA Order
2494, Contract MDA903-76-C-0206. Additional support was provided by the National Science
Foundation through an NSF Graduate Fellowship, the International Business Machines
Corporation through an IBM Graduate Fellowship, and the Josephine de Karman Fellowship
Trust through a Josephine de Karman Fellowship. I am extremely grateful to all of these
organizations for their financial support.

The views and conclusions contained in this thesis are those of the author and should not be
interpreted as necessarily representing the official policies, either expressed or im lied
the organizations mentioned above.

!-

Table of Contents

Section Page

1. Introduction 1
I1.1 Summary of Research I

1.2 The Problem 2
1.2.1 Incremental Specification 3
1.2.2 Informal Specification 3

1.3 Control Structure 4
1.4 Knowledge Base 5
1.5 Example of PMB in Operation 6
1.6 Role of PMB in a Program Synthesis System 1i
1.7 Outline of Thesis 14

2. The Problem 15
2.1 The Program Synthesis Context 15
2.2 Limiting Assumptions 16

2.2.1 User Group: Programmers 16
2.2.2 Programming Domain: Symbolic Computation 16

2.3 Design Goals 17
2.3.1 Very High Level Specification 17
2.3.2 Interactive Specification is
2.3.3 Incremental User Control 19
2.3.4 Informal Specification 20
2.3.5 Program Modification 22
2.3.6 Target Program Goals 22

2.4 Program Synthesis Paradigm: Separate Acquisition and Coding Phases 23
2.5 Additional Design Goals for Acquisition 24

2.5.1 Multiple Specification Techniques 24
2.5.2 Understanding Specific Programming Subdomains 24

2.6 Program Acquisition Organization: Independent Programming Expert 25
2.7 Detailed Problem Definition: Differences between Fragments and Model 26
2.8 Program Synthesis As Specification Transformation 28

3. Survey of Related Work 31
3.1 Incremental Acquisition of Informal Programs 31

3.2 Programmer Aid Systems 32
3.3 Recognition Problem Solving Using Demons 33
3.4 Programming Methodologies 33
3.5 Very High Level Languages 34
3.6 Knowledge Representation by Rules and Frames 34
3.7 Compiler Technology 34

4. An Example 35
4.1 The CLASSIFY Program 35
4.2 Example Inputs and Outputs 35

4.2.1 English Specification Dialog with PSI 36
4.2.2 Program Fragments Input to PMB 37
4.2.3 Program Model Output by PMB 39

_ :.7_ -_-.. - - '- . ,

Table of Contents

Section Page
4.2.4 Typescript of Sample Interpreted Execution 42

4.3 Annotated Trace of Model Building 43

5. The Input: Program Fragments 65
5.1 Format of Fragments 65
5.2 Program Specification Information 67

5.2.1 Types of Fragments 67
5.2.2 Incompleteness 69
5.2.3 Inconsistency 69
5.2.4 Variety of Specification 70

5.3 Program Reference Information 70

6. Control Structure: The Rule Interpreter 73

6.1 External Control Structure: Data Driven Subgoaling 75
6.2 Internal Subgoals: Demons 77

6.2.1 Compound Demons 78
6.3 Comparison to Structured Programming 79
6.4 Related Problem Solvers 80

6.4.1 The Recognition Paradigm 80
6.4.2 GUS

8 i

6.4.3 Demon Regimes 82
6.4.4 Processes 83

6.5 Other Approaches 83
6.5.1 MYCIN 83
6.5.2 SAFE 84

7. The Output: Program Modelling Language 85
7.1 Information Structures 88

7.1.1 Information Structures of the TF Program Model 89
7.2 Control Structures 91

7.2.1 Procedural Part of the TF Program Model 92
7.3 Primitive Operations 94
7.4 Assertions 94

8. The Knowledge Base: Rules for Building Program Models 95
8.1 Format and Types of Rules 95

8.1.1 Response Rules 95
8.1.2 Simple Demons 98
8.1.3 Compound Demons and the Rule Expander 99

8.2 Incremental Building 102
8.3 Completeness 102

8.3.1 Default 103

8.3.2 Inference: Type Coercion 103
8.3.3 Questioning 103
8.3.4 Cross-References 103

vi

Table of Contents

Section Page

8.4 Semantic Consistency 104
8.4.1 Consistency Checking 104
8.4.2 Inconsistency Resolution 10.4
8.4.3 Specialization of Generic Operators 106

8.5 Canonization 106

9. Conclusion 109
9.1 Program Models Built 109
9.2 Contributions 110

9.2.1 A Framework for Program Acquisition 110
9.2.2 Program Fragment Language 110
9.2.3 Control Structure III
9.2.4 Knowledge Base III
9.2.5 Implementation 112

9.3 Limitations and Future Work 112
9.3.1 Role of Model Building in Other Systems 112
9.3.2 Control Structure 113
9.3.3 Program Modelling Language 113
9.3.4 Knowledge Base 114

9.4 Concluding Thoughts 115

10. References 117

Appendix Page

A. Proposed Program Reference Language 127
A. I Textual References 128
A.2 Syntactic (Lexical) References 129
A.3 Contextual References 132
A.4 Historical References 133
A.5 Semantic References 133
A.6 Pragmatic References 134

B. Example Rules 135
B.I Completeness by Default and Questioning:. Response Rules 135

B.i.l Response Rules for Information Structures 135
B.!.2 Response Rules for Control Structures 135
B.i.3 Response Rules for Primitive Operations 136

B.2 Completeness by Inference 138
B.3 Completeness by Generating Cross-References 138
B.A Consistency Checking 139
B.5 Inconsistency Resolution 139
B.6 Specialization of Generic Operators 140
B.7 Canonization 140

yii

Chapter 1. Introduction

Most of the research that has been done under the rubric of "auomatic programming" ouring
the past decade has been of a formal nature. The two areas that have seen the greatest effort
are synthesis systems based on theorem proving and low level programming aids such as syntax
oriented program editors. Both of these areas have made important contributions to the field.
But both of these areas require the human user to provide a formal input of some sort, be it
predicate calculus statements or a computer program. For many purposes, such formal
specifications are appropriate.

There is another approach that also shows promise of making the programmer's task easier.
This approach emphasizes informal program specification. Some examples of this type of
specification are natural language dialog, example pairs of inputs and corresponding outputs,
execution traces of important process states, and graphical examples. Most researchers on
informal program acquisition have proceeded by choosing one of these specification techniques
and then writing a system that derives programs for a class of specifications using that
technique.

The approach developed in this thesis looks at informality in programming terms, rather than
in terms of the external specification technique. The goal is to find a common set of
informalities that are useful for programming, independent of any particular specification
technique. One offshoot of this approach is the creation of a formal programming language for
the expression of informalities that itself might be the basis of useful program specification by
people. In audition to its relevance to artificial intelligence ("Al"), this work may be of interest
to such software systems research areas as semiautomatic programming aids, intelligent program
editors, and incremental compilers.

1.1 Summary of Research

Program acquisition is the transformation of a program specification into an executable, but not
necessarily efficient, program that meets the given specification. This thesis presents a solution
to one aspect of the program acquisition problem: the incremental construction of program
models from informal descriptions. The key to the solution is a framework for incremental
program acquisition that includes (I) a formal language for expressing program fragments that
contain informalities, (2) a control structure for the incremental recognition and assimilation of
such fragments, and (3) a knowledge base of rules for acquiring programs specified with
informalities.

The thesis describes a LISP based computer system called the Program Model Builder
(hereafter abbreviated "PM B"), which receives informal program fragments incrementally and
assembles them into a very high level program model that is complete, semantically consistent,
unambiguous, and executable. The program specification comes in the form of partial program
fragments that arrive in any order and may exhibit such informalities as inconsistencies and
ambiguous references. Possible sources of fragments are a natural language parser or a parser
for a surface form of the fragments. PMB produces a program model that is a complete and
executable computer program. The program fragment language used for specifications is a
superset of the language in which program models are built. This program modelling language

S I

2 Introduction

is a very high level (hereafter abbreviated "VHL") programming language for symbolic
processing that deals with such information structures as sets and mappings.

PMB has expertise in the general area of simple symbolic computations, but PMB is designed
to be independent of more specific programming domains anu particular program specification
techniques at the user level. However, the specifications given to PMB must still be algorithmic
in nature. Because of the VHL nature of the program model produced, PMB also operates
independently from implementation details such as the target computer and low level language.
PMB has been tested both as a module of the PSI program synthesis system [Green-76A, Green
et al.-791 and independently. Models built as part of PSI have been acquired via natural
language dialogs and execution traces and have been automatically coded into LISP by other
PSI modules. PMB has successfully built a number of moderately complex programs for
symbolic computation.

By design the user is allowed to have control of the specification process. Therefore PMB must
handle program fragments interactively and incrementally. Interesting problems arise because
these informal fragments may arrive in an arbitrary order, may convey an arbitrarily small
amount of new information, and may be incomplete, semantically inconsistent, and ambiguous.
To allow the current point of focus to change, a program reference language has been designed
for expressing patterns that specify what part of the model a fragment refers to. Various
combinations of syntactic and semantic reference patterns in the model may be specified.

The recognition paradigm used by PMB is a form of subgoaling that allows the parts of the
program to be specified in an order chosen by the user, rather dian dictated by the system.
Knowledge is represented as a set of data driven antecedent rules of two types, response rules
and demons, which are triggered respectively by either the input of new fragments or changes
in the partial program model. In processing a fragment, a response rule may update the partial
program model and create new subgoals with associated response rules. To process subgoals
that are completely internal to PMB, demon rules are created that delay execution until their
prerequisite information in the program model has been filled in by response rules or perhaps
other demons.

PMB has a' knowledge base of rules for handling modelling language constructs, processing
informalities in fragments, monitoring the consistency of the model, and transforming the
program to canonical form. Response rules and simple demons are procedural. Compound
demons have more complex antecedents that test more than one object in the program model.
Compound demons use declarative antecedent patterns that are expanded automatically into
procedural form.

1.2 The Problem

The two key problems faced by PMB come from processing fragments that specify programs
incrementally and informally.

I ~

The Problem 3

1.2.1 Incremental Specification

The notion of incremental program specification means that the fragments specifying a program
may be received in an arbitrary o.ler and may contain an arbitrarily small amount of new
information. Fragments are accepted in any order to allow the user to provide new knowledge
about any part of the program at any time. The amount of new information conveyed by each
fragment is allowed to be small in order to provide the greatest flexibility for interactive,
incremental specification. For example, a single fragment conveying a small number of pieces of
information is the statement "A is a collection."1. This identifies an information structure called
A and defines it as a collection of objects. However, the fragment says nothing about what
sorts of objects comprise the collection, whether A is a set or a list, how many elements are in
A, where and how A is used in the algorithm, etc. All of these details are provided in o'her
program fragments that may occur either before or after this one.

With respect to the feature of accepting fragments in arbitrary order, PMB is analogous to an
intelligent program editor. Whereas nearly all interactive editors are text or, at most, syntactic
editors, PMB incorporates knowledge of the semantics of a particular programming language so
that higher level feedback can be given to the user incrementally and so that only legal
programs will be admitted in the end.

1.2.2 Informal Specification

The use of informality means that fragments may be incomplete, semantically inconsistent, or
ambiguous; may use generic operators; and may provide more than one equivalent way of
expressing a program part.

The description of one part of a program model may be incomplete at any point during model
building. It may then be completed either by use of a default value, by inference by PMB, or
from later fragments from the user.

Program model consistency is monitored at all times. PMB tries to resolve inconsistencies first;

otherwise, it reports them to the user. For example, the fragment

x=A

(a Boolean operation that checks if object x is an element of collection A) requires that either A
have elements of the same type as x (whenever the types of A and x finally become known) or
the type of one of them be inferred to be the same as the other.

Because a fragment may possess ambiguities, it may be interpreted in a number of ways,
depending upon the program model context. For example, PMB specializes a generic operator
into the appropriate primitive operation, based upon the information structure used. For
example,

In this thesis the names of program constructs or entities are set in special type faces. Control

and information structure types appear in boldface. The names of other primitive operations,
as well as information structures and procedures defined by the user, appear in italics. Be
aware that italics is sometimes also used in standard ways, e.g., for emphasis and to denote
special terminology that is being defined.

* 4 In trod uct ion

part-of(x,A)

(a Boolean operation that checks if information structure x is somehow contained within
information structure A) becomes

xEA

if A is a collection with elements of the same type as x. However, if A were a plex (record
structure) instead, an is-component operation might be used to test whether x is the value of
one of the components of A.

Within the modelling language there may be a number of formally equivalent ways to encode

the same expression or information structure. An important task for PMB is canonization, the
transformation of information and procedural structures into concise, high level, canonical
forms. The intent is to map equivalent expressions into one canonical form whenever they are
detected. This allows subsequent automatic coding the greatest freedom in choosing

implementations. Interesting patterns are detected by specific rules set up to watch for them.
For example, expressions that are quantified over elements of a set are canonized to the
corresponding expression in set notation. Here is an expression that uses a notation similar to
that of the predicate calculus to represent a predicate over all elements of some universe:

(V x) x E A z x e B

This Boolean expression determines whether every element x in collection A is also in

collection B. The process of canonizing transforms this expression into

AcB

(is A a subset of B).

1.3 Control Structure

The model building problem is one of acquiring knowledge from the external environment.
This knowledge takes the form of a program model. But many other domains of knowledge
based understanding (e.g., natural language, speech, vision) have analogous problems and
knowledge bases. The general paradigm that many of these systems follow is called
'recognition" [Minsky-75, Bobrow & Winograd-77]. In this paradigm, the system watches for
new information, recognizes the information based upon the system's knowledge of the domain
and the current situation, and then integrates the new knowledge into its knowledge base.

The control structure of PMB is based upon the recognition paradigm, and has one key
feature: PMB subgoals may be dealt with in an order chosen by the user, rather than dictated
by the system. Subgoals are satisfied either externally or internally to PMB. The two cases are
handled by the two kinds of data driven antecedent rules, response rules and demons, which are
triggered respectively by either the input of new fragments or changes in the partial program
model. When new information arrives in fragments, appropriate response rules are triggered to
process the information, update the model being built, and perhaps create more subgoals and
associated response rules. Each time a subgoal is generated, an associated "question" asking for

Control Structure 5

new fragments containing a solution to the subgoal is sent out by PMB to its external
environment. This process continues until no further information is required to complete the
model. To process subgoals that are completely internal to PMB, demon rules are created that
delay execution until their prerequisite information in the program model has been filled in by
response rules or perhaps other demons. Information is added to the program model
monotonically. Therefore, if an inconsistency caused by the most recent fragment can't be
resolved automatically by PMB, the last fragment must be changed by the user.

The incremental approach of PMB may be contrasted with the approach used in SAFE, the
only comparable program acquisition system (Balzer et al.- 78]. A SAFE program specification,
in the form of a preparsed English paragraph, is passed through three noninteractive phases.
The first acquires domain knowledge in the form of relations by recognizing what relations
exist in the sentences; the second infers ordering constraints on the parts of the program; and
the last partially symbolically evaluates the program to fill in missing operands and other
information. The output is a program in an Al language that includes demons as a standard
control structure and relations as the only information structure. The last stage of SAFE
handles completeness and consistency issues, but not incrementally-except in the sense that it
finds problems in the order of program execution. If there are unresolvable errors in the
program, the specification must be changed and the system restarted.

1.4 Knowledge Base

PMB has a knowledge base of rules for handling constructs of the program modelling
language, processing informalities in fragments, monitoring consistency of the model, and doing
limited forms of program canonization. These rules about the modelling language include facts
about five different information structures, six control structures, and approximately twenty
primitive operations. The control structures are ones that are common to most high level
languages. The language's real power comes from its very high level operators for information

structures such as sets, lists, mappings, records, and alternatives of these.2

Below are English paraphrases of three rules that exemplify the major types of rules used in
PMB. The first rule is a response rule for processing a new loop. The second is a demon that
checks that the arguments of an is-subset operation are consistent. The third is a canonization
demon that transforms a case into a test when appropriate.

2 A complete list of the constructs in the program modelling language is given in Chapter 7.

6 Introduction

Examples of Three Types of Model Building Rules

A loop consists of an optional initialization, required body, and required pairs of
exit tests and exit blocks. Each exit test must be a Boolean expression occurring
within the body.

Require that the two arguments of an issubset operation both return collections
of the same prototypic elemen.

if
(1) the statement is a case,
(2) the case has two condition/action pairs, and
(3) the first condition is the negation of the second condition,

then
change the case into a test.

Knowledge is represented as a set of data driven antecedent rules that are triggered by either
the input of new fragments or changes in the partial program model. The rules are separated
into two categories, response rules and demons, based upon these two ways of being triggered. j

Both response rules and simple demons are procedural. Compound demons (i.e., those whose
antecedents test more than one object in the program model) use declarative antecedent patterns
that are expanded automatically into procedural form.

As an example, consider the above response rule for loops. When a loop is required, this rule
creates a unique template in the r.rogram model for the loop. Then the rule sets up subgoals
for the loop's initialization, body, and exit blocks, along with appropriate response rules for
each. These rules will process the parts of the loop as they arrive in fragments, and then store
the results in the loop template in the program model. Questions soliciting information about
these loop components are sent outside PMB to the user or other knowledge sources. In
addition, for each exit test a demon is created that will wait until the location of that test
becomes known and then check that the location is within the body of the loop.

1.5 Example of PMB in Operation

The example from Chapter 4 of PMB building one entire program model is excerpted below in
order to give the reader the flavor of the two types of processing going on: (I) growth of the
program model tree in a fashion that is generally top down, but data driven, and (2) completion
and monitoring of parts of the model by demons. Note that this excerpt does justice neither to
the concept of arbitrary order of fragments nor the types of programming knowledge in P.M B.

The trace includes four of the program fragments that were generated by the PSI
parser/interpreter from an English dialog. Before each fragment, a hypothetical English
sentence that might result in such a fragment is given. Each fragment is followed by a
description of how it was processed by PMB, a snapshot of the partial program model at that
point, and a list of the outstanding demons. The processing of the first fragment presented is
traced in greater detail than the rest, in order to show PMB focusing on individual slots of a

Example of PMB in Operation 7

fragment, creating model templates, and creating subgoals. The discussion of the last two
fragments emphasizes the creation and triggering of demons.

Comments interspersed within the trace are indented. Fragments and models are printed in a
PASCAL-like notation, although they are maintained internally as property lists. Names
preceding colons are unique template names (analogous to statement labels in ALGOL) that
allow fragments to refer to different parts of the model. Mnemonic names have been assigned
wherever possible to avoid using the computer symbols generated by PSI. Missing parts of the
partial program model that are still to be filled in by later fragments are denoted by "???". Lines
that are new or have changed from the immediately preceding model or demon list are denoted
by the character "I" at the right margin.

Excerpt of Model Building Trace

The excerpt starts after the first fragment has already caused the partial program
model shown below to be created. It only contains the names of the model,
CLASSIFY, and the main algorithm, "algorithm-body". No demons have been
created yet.

Current program model:

program classify;

algorithm-body: ???

Current demons active:
None

The second fragment describes the top level algorithm as a control structure having
type composite and two steps called 'input-concept" and "classify-loop". This
fragment might have arisen from a sentence from the user such as "The algorithm
first inputs the concept and then classifies it.".

Inputting fragment:

algorithm-body:
begin

input-concept;
classify-loop

end

A composite is a compound statement with a partial ordering on the execution of
its subparts. The partial ordering is optional and defaults to sequential. The
response rule that processes the composite creates the following two subgoals (or
questions), along with response rules to handle the answers (not shown):

Processing ALGORI THM-BODY. TYPE u COMIPOSI TE
Creating subgoal:

ALGORITHMI-BOOY.SU8PARTS ???
Creating subgoal:

ALGORITHI1-BOOY.OROERINGS ???
Done processing ALGORI THM-BOOY. TYPE - COMPOSITE

8 Introduction

Within the same fragment the two subparts are defined as operational units with
unique names, but of unknown types. An operational unit can be any control
structure, primitive operation, or procedure call. Two new templates are created
and their types are requested.

Processing ALGORI THM-BOOY. SUBPARTS - (INPUT-CONCEPT CLASSIFY-LOOP)
Creating template INPUT-CONCEPT with value

I NPUT-CONCEPT. CLASS = OPERATIONAL-UNIT
Creating subgoal:

INPUT-CONCEPT.TYPE ?
Creating template CLASSIFY-LOOP with value

CLASS IFY-LOOP. CLASS = OPERATIONAL-UNIT
Creating subgoal:

CLASSIFY-LOOP. TYPE ???
Done processing ALGORI THM-BOOY.SUBPARTS - (INPUT-CONCEPT CLASSIFY-LOOP)

At this point, the program model is missing the definitions of the two parts of the
con posite.

Current program model:

program classify;

begin
input-concept: ..?;
classify-loop: ???

end

Current demons active:
None

The next fragment defines an input primitive operation that reads from the user
an information structure of type concept-prototype. The three arguments of an
input operation are the prototype of the information structure to be input, the
source of the input, and a prompt string to be output just prior to input. This
fragment would be generated from the same sentence as the last fragment: 'The
algorithm first inputs the concept and then classifies it.".

Inputting fragment:

input-concept: input(concept -prototype, user, concept-prompt)

PMB creates information structure prototypes called concept-prootype and
concept-prompt. PMB infers that the object of type concept-prototype that is input
should be saved in an instance (or variable) of that type. So PMB creates one
called concept and puts the input inside a remember operation (denoted by "-"
below). Prototypes are listed after the keyword type below, and instances of
prototypes are listed after var.

Example of PMB in Operation 9

Current program model:

program classify;

type
concept-prototype: ??

concept-prompt: string .. ,??

var
concept: concept -prototype;

begin
concept 4-. input(concept-prototype, user, concept-prompt);
classify-loop: ???

end

Current demons active:
None

Now the fragment that defines the second step of the composite is processed. This
fragment might have been produced from the following sentence: "The
classification step is a loop with a single exit condition.".

Inputting fragment:

classify-loop:
until exit (exit-condition)

repeat loop.body
finally exit:

endloop

This fragment defines a loop that repeats "loop-body" (as yet undefined) until a
Boolean expression called "exit-condition" is true. At such time, the loop is exited
to the empty exit block, called "exit", which is associated with "exit-condition".

At this point PMB doesn't know for sure where in the algorithm the test of

"exitcondition" will be located, so it is shown separately from the main algorithm
below. The response rule that processes the loop needs to guarantee that
*exit-condition" is contained within the body of the loop. Since this can't be
determined until the location of *exit-condition" is defined in a fragment, the
response rule creates a demon to wait until this event. So Demon I (the number is
assigned only for identification) is created and attached to the template for
*exit-condition". Here Demon I will awit the definition of the control structure
that contains "exit-condition".

Similarly, Demon 2 is created to await the location of "exit-condition" and then put
it inside a test with an assert.exit-condition as its true branch. This will cause the
loop to be exited when the exit condition becomes true.

10o In troduct ion

Current program model:

prograin classify;

type '
concept -prototeype: ??
concept-p.rompt: string ???

var
concept: concept-prototype;

begin
conceptt +- input(concept-rototype, user, concept-promp);
until exit

repeat
loop-.body: ??

finally
exit:

endloop
end

exit-condition: ??

Current demons active:
Demon 1: aw~aiting control structure containing "exit_.condlition"
Demon 2: awaiting control structure containing 'exit~condition"

The final fragment of this excerpt defines the body of the loop, thus triggering the
two demons set up previously. One English specification that could be the source
of this fragment is 'The loop first inputs a scene, tests whether the datum that was
input is really the signal to exit the loop, classifies the scene, and then outputs this
classification to the user."

Inputting fragment:

loop-bod y:
begin

loop-input;
exit-cond ition;
classification;
output-classification

end

So "loop-body" is a composite with four named steps. Even though none of the
four is fully defined yet, PMB now knows where Nexit-condition" occurs and that it
must return a Boolean value.

Demon I is awakened to find that 'exit-condition" is located inside the composite
"loop-.body". Since this isn't a loop, Demon I continues up the tree of nested

Example of PMB in Operation 11

control constructs. It immediately finds that the parent of "loop-body" is the
desired loop. So Demon i succeeds and is destroyed, as are most demons after they
succeed.

Demon 2 is also awakened. Since it now knows 'exit-condition" and its parent,
Demon 2 can create a new template between them. The demon creates a test withaexit-condition" as its predicate and an assert-exit -condition that will leave the

loop as its true action.

Current program model:

program classify;

type
concept -prototype: ???,
concept-prompt: string -.. ,?;

var
concept: concept-prototype;

begin
concept 4- input(concept-prototype, user, concept-prompt);
until exit

repeat
begin

loop-input: ?-
if exit-condition: ??? then assert-exit-condition(exit);
classification: ???;
output-classification: ???

end
finally

exit:
end endloop

Current demons active:
None

At the end of the excerpt, five fragments have been processed, and 27 more must
ILI be before the program model is complete.

1.6 Role of PMB in a Program Synthesis System

PME was designed to operate as part of a more complete program synthesis system with two
distinct phases: acquisition and automatic coding. In such a system the program model would
serve as the interface between the two phases. Automatic coding is the process of transforming
a program model into an efficient program, without human intervention. Program models are
acquired during the acquisition phase; coding of the model is only done when it is complete
and consistent. A system organization based on this paradigm is shown in the diagram below.

I

12 Introduction

Two-Phase Program Synthesis Paradigm

user4
Acquisition

Phase

program model

Cod i ng
Phase

target program

PMB was designed so that it may operate within a robust acquisition environment. In such an
environment, program fragments may come from many other knowledge sources, such as those
expert in traces and examples, natural language, and specific programming domains, as depicted
in the diagram below. However, the operation of PMB is not predicated on the existence of
other modules, each of which is a complex Al program in its own right. For example, all
fragments to PMB could be produced by a straightforward deterministic parser for an informal
VHL surface language, such as the one used to express program fragments.

I

a!

Role of PMB in a Program Synthesis System 13

Typical Acquisition Environment for Which PMB Was Designed

use,

Trace Natural Informal
and Domain Language VHL

Examples +- Expert - Processor Language
Expert Parser

program fragments

Program
Model

Builder

i1 program model

In addition to providing a focus and testbed for developing a framework of program
acquisition, PMB plays a central role as one of the expert modules or knowledge sources of the
PSI program synthesis system [Green.76A, Green et aL.-79]. PSI is divided into acquisition and
coding phases, with PMB as part of the acquisition phase. In this first phase a VHL model of
the desired program is acquired from the user. In the second phase an efficient program is
-oded from this model. The user's external program specification (e.g., English) is first
transformed into fragments by other acquisition modules that are experts on particular
specification techniques or programming domains. Then PMB builds a complete and consistent
program model based upon the user's program specification. When complete, this program
model is refined by the PSI coding phase into an efficient target program (Barstow-79A, Kant-
79A, Kant-79BJ. In actual operation, PMB has built models from fragments produced by PSI's
English parser/interpreter (Ginsparg.78 and PSI's expert on program inference from traces
and examples (Phillips-"7].

14 Introduction

1.7 Outline of Thesis

Subsequent chapters discuss the problem area in detail, examine all aspects of the solution, and
end with a discussion of the results.

The program acquisition problem is defined in some detail in Chapter 2, because PMB was
designed to fit within a particular framework for automatic (or, more accurately, semiautomatic)
programming. Chapter 2 is my personal view of the program synthesis research arena. The
chapter is a discussion of the important problems and a global system design strategy for
solving them. The discussion starts with a general definition of program synthesis and
progresses to a detailed definition of the program model building problem in terms of the
differences between PMB's input and output. Of course, much of the discussion also reflects
conceptions-and biases-resulting from my interactions with the PSI group over a number of
years.

Chapter 3 provides a brief survey of related research areas. It is designed only to provide
pointers to the literature and a basic framework for understanding how PMB relates to the rest
of program synthesis, artificial intelligence, and software systems. Detailed comparisons of
approaches and techniques are contained in the relevant sections elsewhere.

A detailed example of the operation of PMB is presented in Chapter 4. This provides the
details of building an entire program model for a fairly complicated program, from start to
finish. In addition to an annotated trace of model building, the English dialog that was the
source of program fragments is given. A sample execution of the resultant program model is
listed too.

Chapter 5 discusses the format of fragments and the aspects of informality that make the
program fragment language different from other programming languages. The last section of
the chapter introduces the program reference language, which could be used to describe where
in the program model a fragment is to be incorporated. The discussion will interest those
concerned with intelligent program editors and other programming aids. A more complete
description of the reference language is presented in Appendix A.

Chapter 6 describes the control structure of PMB, which consists of user directed subgoaling

with asynchronous demon invocation. This structure is compared to other problem solving
techniques used in both Al (notably, natural language understanding) and software systems,
and the generality of the techniques is related to structured programming. Chapter 6 is
probably of greatest interest to people in artificial intelligence.

The program modelling language is briefly defined in Chapter 7. That material will be of most
interest to designers of programming languages, especially very high level languages.

Chapter 8 defines the structure of the rule base of program acquisition knowledge and the types
of rules in it. It also provides some example rules and a discussion of the various types of
knowledge in PMB. Many more rules are listed in Appendix B. Chapter 8 will probably be of
greatest interest to those doing research in knowledge based systems or program synthesis.

The conclusion. Chapter 9, discusses the program models that have been built; the
contributions of the thesis to the areas of program synthesis, artificial intelligence, and software
systems; and directions for extensions of the research to remove some of its limitations.

15

Chapter 2. The Problem

The problem addressed by this thesis is termed the "model building" problem. The discussion
of the problem is comprehensive because the area is relatively new and experience has shown
that the problem is not a particularly intuitive one. The key notions involved in building
program models are not directly analogous to any one body of prior research.

The goals of research on PMB are quite similar to the broader goals for program synthesis
systems such as PSI. In both cases, people outside of the field often have difficulty
understanding these goals. Hence, it is important to clearly state the case for systems of this
type.

We present a top down development of the problem definition. First the context within the
larger, more general program synthesis problem is presented. Then major assumptions, design
goals, and design decisions of the current work are discussed.

2.1 The Program Synthesis Context

The model building problem that is addressed is at the bottom of a hierarchy of problems.

The top level problem is the general program synthesis problem': Transform a program
specification expressed in some formal or informal specification language into an executable and
efficient program that meets the given specification. This is a very broad problem, including
not only artificial intelligence approaches, but standard compiler technology as well. However,
the most difficult (and perhaps most interesting) case arises when the program specification is
not directly executable in its initial form.

The subproblem of interest within the program synthesis problem is the program acquisition
problem: Transform a program specification into an executable, but not necessarily efficient,
program that meets the given specification. This subproblem merely eliminates the requirement
that the program resulting from the transformation be efficient.2

Finally we reach the specific problem dealt with by this thesis, a part of the program acquisition
problem called the model building problem: Receive informal program fragments incrementally
and assemble them into a very high level program model that is complete, semantically
consistent, unambiguous, and executable. Here the program specification comes in the form of
partial program fragments that arrive in any order and may exhibit inconsistencies and
ambiguous references. The program produced is a program model that is a complete and
executable computer program.

Sometimes also called the 'automatic programming problem"

2 There is another subproblem, called problem acquisition, which additionally removes the
requirement that the result of the transformation be an executable program. An example is a
set of statements in the predicate calculus that, when processed by a theorem prover, yields a
result, possibly in the form of a computer program (Green-69). The set of statements is not
itself a program, rather merely a problem statement that, when solved, will result in a computer
program. Arbitrary problem acquisition is not the focus of this thesis.

16 The Problem

2.2 Limiting Assumptions

First we note two fundamental limitations that we have imposed in order to make the model
building problem tractable.

2.2.1 User Group: Programmers

A fundamental assumption of our approach is that the user of the system is assumed to be
familiar with programming. In limiting users to programmers, we are implying that
specifications will still reflect a particular algorithm and information structures, not something
more abstract. The system is not expected to be especially creative with respect to designing its
own algorithms.

Many people feel that it is time to forget programmers and try to help nonprogrammers
directly. We feel that there are many difficult and important problems left to be solved in the
quest of making programming easier for programmers before tackling the much harder
problem of extending to nonprogrammers the capabilities now afforded only to programmers.
We think that helping programmers with some of their less creative, more mundane tasks (e.g.,
bookkeeping) is an appropriate first step, and is on the critical path to achieving automatic
programming for nonprogrammers as well.

Programming is an intellectual task that is highly labor intensive. As computers get cheaper
and qualified programmers get relatively more expensive, automating as much of the
programming process as possible becomes more and more important.

To accommodate users who are not programmers would introduce an entirely new level of
complexity to our problem. One solution would be to merely add a front end or integrate into
the original system a capability for the computer assisted teaching of programming. This
solution avoids the problem of doing program acquisition for nonprogrammers by forcing the
user to become a programmer in the standard sense.

A better solution would involve changing the task from program acquisition to problem
acquisition. The problem would be stated in a nonprocedural language that is highly tailored
to a specific task domain. Since the user is presumably an expert in this domain, the
communication problem would therefore be reduced, but the system would then have the
additional difficulty of converting the problem specification into a program. Solutions might
involve techniques for algorithm creation [Tappel-79] and discovery3 and certainly would
require much domain specific knowledge. These are interesting research areas, but ones that
are not covered here.

2.2.2 Programming Domain: Symbolic Computation

There really is no such thing as domain independent programming. Hence domainj independent automatic programming, as purported in [Balzer et al.-7,], doesn't exist either.

3 For a possible approach to the discovery of algorithms, consider the work on automated

mathematics discovery [Lenat-76, Lenat-77J.

Limiting Assumptions 17

Instead there are hierarchies of programming domains, from very general to very specific.4 For
example, symbolic computation is a very broad domain; so is the domain of numerical
algorithms. Algorithms for the solution of differential equations form a narrower domain, and
the class of all programs based on the Runge-Kutta method is a very specific programming
domain.

Some programming domain has to be chosen just to make our problem feasible. Hopefully the
domain selected will have widespread importance. An even more important consideration is
that the domain chosen not limit the generality of the program acquisition framework that is
developed.

The programming domain chosen for this work is that of simple symbolic computationss-as
opposed to, say, numerical or realtime control algorithms. For our purpose. the universe of
possible programs is limited to those for symbolic processing, and specific programming domains
are subsets of this universe. Example domains include set manipulation, list processing,
searching, sorting, simple data storage and retrieval, pattern matching, and symbolic learning.
Although, say, numerical algorithms could have been chosen, the area of symbolic
programming is fundamental to much of computer science (even to some numerical algorithms).
Knuth has said about just the subdomain of sorting and searching [Knuth-73B, page v]:

Indeed, I believe that virtually every important aspect of programming arises
somewhere in the context of sorting or searching!

2.3 Design Goals

Now we list some useful properties of a model building system that form the basic assumptions
on which the thesis rests. In general, the goals discussed in this section stem from a desire to
provide the user with more capabilities and flexibility in program specification, thereby forcing
the program acquisition system, and PMB in particular. to provide more intelligent assistance to
the user.

2.3.1 Very High Level Specification

Perhaps the most significant assumption is that much higher level (in terms of information and
control structures) languages than are now prevalent will be used in our interactions with
computers. Programming is a difficult intellectual exercise. Part of the difficulty is the sheer
complexity of the details required to successfully compose a nontrivial program in any of the
commonly used languages. Program specification and subsequent modification will be done at a
higher conceptual level than at present, to reduce the magnitude of the programming details
involved and the complexity of communicating with the user. This implies that the program
model is updated during interactive acquisition, rather than the zarget program being
manipulated incrementally. For example, PMB builds programs in a very high level (VHL)
language, and automatic coding systems such as the one in PSI take care of the details of

4 Of course, domains may overlap as well.

s Of course, at the lowest level, all computation is symbolic in nature.

LI

18 The Problem

translating this language to lower level ones.6

Limited English is one VHL language suitable for certain applications. This does not imply
that an algorithmic language such as ALGOL has no place, but merely that it can often be
successfully replaced. When specifying a program in English to PSI, the user should not have
to understand the target language program and make changes at that level.

Present day high level languages and their compilers provide a good analogy. Users need to
write code at the level produced by the compiler only for special purposes; nearly all
programming is carried out at the source language level.

Now add the assumption that the target language used for the synthesized program is
significantly below the level of the specification language. Potential target languages today are
conventional high level languages, assembly language, microcode, and possibly mixtures of
these. There is a large gap between a specification language such as English and a target
language such as assembly language, in terms of brevity, ambiguity, consistency, and
completeness. It is clear that direct automatic conversion between the two, especially
incrementally, would be very difficult. It is reasonable to interpose an intermediate level
specification language into which the user's specification is first transformed. This is the role of
the program modelling language used by PMB.

The level of this intermediate, acquisition level language, in terms of its control and
information structure primitives, is an important design decision. Choosing too high a level
(e.g., unrestricted predicate calculus) may result in an intractable coding problem. Choosing too
low a level (e.g., assembly language) may unduly restrict the coding options available and make
the acquisition process too difficult. Standard high level languages have often been proposed
for this intermediate language. But they all have information structures that are designed for
direct, efficient implementation on most computers. So high level languages are too low level
for our needs because they restrict coding and make acquisition more difficult.

2.3.2 Interactive Specification

The system should be interactive so that it can provide immediate feedback to its user, either in
response to questions or specifications that aren't fully understood. One rationale for interaction
arises from the following analogy: Interactive program specification is to batch specification as
interactive program development using high level languages and text editors is to batch
programming using decks of cards. But an even a stronger analogy can be made, since most
interactive program development today is really a form of online batch in which the text editor
takes the place of the card punch and calling the compiler on the edited file corresponds to
reading a card deck into a card reader.

This second analogy defines interactive program specification as a combined incremental

6 Programming in standard high level languages and even assembly language is still done
today because appropriate VHL substitutes are not widely available and, more important, the
problem of coding efficient target programs from them has not been solved. But the trend
toward higher and higher level languages will persist because of (1) the continuous (albeit slow)
advances in these two areas and (2) the trend of software to cost increasingly more than
hardware.

Design Goals 19

editor/compiler in which changes to statements or expressions are checked for consistency after
each change. Such compilers today only allow simple editing (e.g., total replacement of a line of
text) because of the difficulty of maintaining enough context for truly incremental compilation
to take place. The approach taken by PM B is to maintain the program as a VHL model after
checking for syntactic and semantic consistency, but not to code incrementally.

2.3.3 Incremental User Control

The perfect programming paradigm has yet to be devised. In particular, different programmers
may desire and different applications may require different orders of defining the parts of a
program. This is especially true for large systems (e.g., compilers, operating systems) in which
the total complexity is so great that a programmer cannot plan out in advance all the
possibilities that the program must consider. In such cases, the most general solution for an
automatic programming system or semiautomatic programming aid is to allow an arbitrary
order for defining, refining, and modifying the parts of the program.

We subscribe to the philosophy that the user should have the option of controlling the
interaction by asking questions or changing the topic under discussion at any time. A user
should be able to converse with an acquisition system as freely and easily as with another
human programmer. Lacking this flexibility, an acquisition system will restrict the user and
thus not be as habitable as is desirable.

This philosophy doesn't necessarily contradict the aims of the school of structured
programming. Our goal is not to force the user to do low level programming and debugging
on a program that was not well thought out. Our goal is to provide computer aids that will
allow the high level thinking and planning phases of programming to take place in a more
automated and less error prone environment.

There are two levels of incremental specification capability. A fully incremental system allows
the user to go back and make changes to what has been specified before. A system with
"monotonically" incremental specification doesn't allow a part to be modified, once it has been
specified. The term "incremental", as used in this thesis, refers to the monotonic case.

There are two aspects of incremental programming: (1) the order that parts of the program are
specified and (2) how much is specified at each step.

Since the user controls the interaction, the user may determine the order in which information
flows into PMB. Information is received piecemeal, as chunks or fragments of program
description. These fragments may arrive in arbitrary order, as long as they carry enough
program reference information to determine their context in the program model being
assembled.

In addition to deciding what part of the program to work on and when, the user may decide
how much of the program part to specify at one time. This means that a program model may
be incomplete at any level, from an entire procedure being missing to a single parameter of a
single operation being left unspecified. This is the reason that PMB is capable of delaying its
operations until the required arguments are completely specified.

Even if the user isn't exercising the option to take control of the interaction, information for

20 The Problem

PMB may still arrive incrementally and arbitrarily ordered, since the generation of questions
and program fragments may be mediated by the activities of other expert programs. For
example, there might be experts on moderating dialogs, modelling the state of the user. or
providing domain support. Any of these experts can intervene between PMB and the user so
that questions are asked of the user in a much different order than PMB's default order. In
addition, other experts may produce fragments as a result of their own reasoning. These may
be sent to PMB independently of what is transpiring with the user. Thus, even if the user
yields control of the dialog to the system, there is no guarantee that questions will be answered
in PMB's default order.

2.3.4 Informal Specification

Another important feature of VHL model building is informality of specification. Most VHL
language designs have concentrated on the issue of defining new and useful VHL programming
primitives. This is certainly necessary, and indeed has been one part of this research.
However, we believe that informality of specification is going to be an equally important design
issue in the future. Any system capable of dealing with informality will have to possess a large
amount of general programming knowledge so that many details can be handled automatically;
so that ambiguities, omissions, and inconsistencies can be caught; and so that different ways of
specifying the same thing can be handled.

An incremental, informal program specification does not constitute an executable algorithm.
Before assembling the individual pieces of program and removing any informalities, the
specification will lack the quality of "definiteness" that is required for any procedure to be
considered an algorithm. This property requires that each step of the procedure be known and
be precisely, rigorously, and unambiguously defined [Knuth-73A, page 5).

An executable algorithm isn't very useful if it isn't also correct. We use a less formal sense of
program correctness than that used in the program verification field [Luckham-77, London-77].
Here a "correct" program model is one that the user is satisfied meets specifications (e.g., by
interpreting it on test data or reading a listing of it) and that the system is satisfied is complete
and consistent. Thus PMB is only concerned with guaranteeing that the final model is a legal
program syntactically and semantically. Verifying that the program is correct in a pragmatic
sense is left to the user or perhaps other knowledge sources. To help out in this endeavor,
assertions could be attached to the program model. These assertions would then be evaluated
during model interpretation to make sure they are always true.

Incompleteness

Compared with their communication with computers, people communicate with one another
fairly efficiently. This is partly because many assumptions are in force and need not be restated
during each conversation. Informality is the analog in program acquisition. VHL primitives
allow programs to be expressed succinctly; informality encourages succinctness by having PMB
infer details that aren't stated explicitly. To do this requires rules about default values for
pieces of programs and rules for computing the appropriate value from elsewhere in the
program.

Another issue is temporary (or local) incompleteness. In this case information is missing and
not inferable. PMB asks for the information and only continues processing that is based on it
after it is provided.

Design Goals 21

Semantic Inconsistency

Statements by people are not consistent, especially during such complex intellectual exercises as
programming. Informality allows for semantic inconsistencies among fragments; these are
noticed by PMB and either resolved automatically or brought to the attention of the user. For
example, a reference to an information structuie definition when its value is required instead
can be corrected automatically.

Ambiguous Operands

Ambiguity is also a powerful tool for making succinct program specifications. These have to be
appropriately interpreted from context by the acquisition system. For example, there are many
ways to refer to a particular information structure, in this case a particular set named A:

the last set I talked about
the set A
the set containing elements of type x
the smallest set

A program reference language has been designed for PMB, but not implemented. If the
examples above were specified in this language, they would be ambigurus. If the last statement
from the user referred to "set B, which is a subset of set C", then whicn of those sets is the last
one talked about? There might be two sets called A, declared in two different subroutines.
There might be two sets containing elements of type x. And the smallest set (presumably out of
all known sets) may vary during program execution. If by "smallest" is meant the set with the
smallest minimum size, then there still could be ambiguity. In most cases, which set is meant is

-easily determined by what part of the program is currently being built or which set meeting the
specifications was referred to most recently.

Generic Operators

Another useful type of informality is the generic or "polymorphic" operator. just as ambiguous
references to operands naturally arise, a generic capability makes it possible for operators to
express ambiguity too. For example, part-of returns a subpart of some other information
structure. Since part-of doesn't exist in the program modelling language, it is transformed into
the appropriate primitive operation based upon the information structure it operates on. For a
collection (e.g., a set), part-of might become an is-element; for a plex (record structure), an
is-component.

Multiple Equivalent Specifications

Another aspect of informality is the desire to allow alternate ways of specifying the same
underlying concept or action, even within the same basic specification method (e.g., English).
All of these equivalent specifications are mapped into the same final form in the program
model: the canonical form, the form that is the most concise expression of the concept and that
will allow the greatest freedom of choice when it is coded. This requires program equivalence
transformations that recognize opportunities for and then carry out program canonization.

reonI rga

22 The Problem

2.3.5 Program Modification

Studies of the programming life cycle have shown that most programs that are used over any
length of time are written once from scratch and then subsequently modified numerous times.
So programming consists of much more modification, reprogramming, or maintenance than
initial programming. Modification may be required because of the discovery of programming
errors, changes in design goals, or changes in the program's execution environment (e.g.,
changes in the format r f the programIs input). Note that a partial program being written can
undergo modification, as well as a previously completed program. Although a modification
capability is a goal of this line of research, it is not available in PMB.

Just as with initial program acquisition and coding, desired modifications should be expressed
and carried out at the highest level feasible, not at the target language level. The program
model should be modified, and a new and efficient target program produced from the new
model. 7 Compilers provide an , ogy. Users need to look at target code only for special
purposes; most interaction is carried out at the source code level.

Modifications can be complicated to handle. A minor change in one part of a program can
have major effects throughout. Thus, conceptually simple changes may be difficult because of
all of the places in the model that must be updated. Of course, this is the sort of bookkeeping
that computers should be used for.

2.3.6 Target Program Goals

Now consider goals for the final programs produced by the entire synthesis system.

Efficiency

The target programs produced should be reasonably efficient in both space and time.

Flexibility

The system should be, in principle, capable of generating programs in more than one language,
for more than one computer, and for varying assumptions about the inputs (e.g., size,
distribution).

Independence of Specification and Coding

The program specification process should be independent of the implementation details. The
user should not have to change to accommodate a change in the level of the target language
(e.g., standard high level language, assembly language, or even microcode), the particular target
language (e.g., LISP or PASCAL), or the target machine.

7 Whether or not any of the old target program should be used or modified is a question for
the coding phase of how efficient this would be versus coding an entirely new program from
scratch.

Program Synthesis Paradigm: Separate Acquisition and Coding Phases 23

2.4 Program Synthesis Paradigm: Separate Acquisition and Coding Phases

Our solution to some of the design goals discussed in the preceding section is a program
synthesis paradigm that separates the problem into two distinct phases: acquisition and coding.
The program acquisition problem is to receive a specification of the desired program. expressed
in one or more formal or informal languages, and to construct an effective procedure for
realizing the specified program. The automatic coding problem is to turn such an effective
procedure into an efficient program. The interface between the two phases is a program model
expressed in a very high level program modelling language for symbolic processing. The
program produced by PMB is termed a "model" because of the desire to model the
corresponding program in the user's head and because it is an abstract, implementation
independent program specification that may actually lead to many different concrete
implementations. Program models are constructed during the acquisition phase; coding from
the model is only done when it is complete and consistent. A system organization based on this
paradigm was shown in the diagram labeled "Two.Phase Program Synthesis Paradigm" in
Section 1.8.

There are many reasons for dividing the problem into acquisition and coding parts, given the
assumptions stated earlier. Both program acquisition and automatic coding are known to be
difficult problems, quite likely more successfully dealt with as separate subproblems.

Acquisition and subsequent modification of a program should be done at a high conceptual
level, to reduce the magnitude of the programming details involved and the complexity of
communicating with the user. This implies that updating is done to the program model during
interactive acquisition and that incremental manipulation of the target program is not done.

Coding can be done most effectively if the complete program is available from the start and is
known to be correct. Coding can proceed with little or no interaction with the user. In contrast,
incremental program specification by definition builds up a complete program from scratch.
Thus, acquisition relies primarily upon forward inferencing from incrementally acquired
information, while coding may use backward chaining to make deductions from the completed
model.

Dividing program synthesis into two phases separated by the program model allows programs
to be optimized by taking different runtime environments into account. The program can be
acquired once and a program model built. Then different programs can be produced by
specifying different execution estimates of the model (e.g., set sizes and branching probabilities),
a different target language (which affects what primitives are available and how much they
cost), and even a different target machine (i.e., instruction set). The programs will of course
have the same input/output behavior, but the code will be designed and optimized for the
particular environment.

Further details of approaches to the automatic coding problem are found in (Barstow-79A].
(Kant-79A], and [Kant-'79B]. Coding considerations are for the most part ignored throughout
the remainder of the present work.

An alternative design for a program synthesis system is a monolithic system with only one
phase or 'pass" [Phillips-79]. This approach obviates the VHL program modelling language
and perhaps avoids having the same knowledge in more than one place in the system. In
addition to the possibility of simply emulating the two phase approach, a one phase system has

4F

...... .J M aiI1

24 The Problem

the flexibility to explore coding possibilities for parts of a program before the rest has been

fully specified. This system uses a single language to express programming concepts from the

most informal specification to the most concrete target language detail. The forms of knowledge

(e.g., rules) may be unified and a single unified global data structure kept.

2.5 Additional Design Goals for Acquisition

Now, concentrating on the acquisition phase, we add two more design goals.

2.5.1 Multiple Specification Techniques

A number of different program specification techniques should be allowed, separately or

intermingled, reflecting the belief that different techniques are useful for different programs and

different users (Green et al.-74]. Examples of candidate techniques include predicate calculus,

informal VHL languages, nonmnteractive natural languages (e.g., a limited subset of Englh),

natural language dialog, speech, execution traces of important process states, example pairs of

inputs and corresponding outputs, and graphical examples.

A model for program specification using multiple techniques may be taken from Knuth's series
of programming texts [Knuth-73A, Knuth-69, Knuth-73B]. In addition to the actual programs
coded in the MIX assembly language, a number of higher level techniques are used to convey

the intent of an algorithm to the reader. Knuth normally uses an informal programming
notation embedded in explanatory English. He often supplements this description with
graphical examples and traces of the program's operation.

A problem arises when more than one specification technique is allowed. The specifications
must somehow be integrated into a single model of the desired program. This problem is

exacerbated when each technique can only be understood by a complicated Al program. In

addition to the programming knowledge specific to one specification technique, each of these

programs would also require a large, redundant body of knowledge, both about the target
programming language and about programming in general. A separate programming expert
such as PMB would eliminate this redundancy.

2.5.2 Understanding Specific Programming Subdomains

Once a general programming domain (e.g., symbolic computation) has been chosen, the system
should be capable of acquiring programs in very specific subdomains (e.g.. concept learning, text
editing, sorting, searching). This capability requires an understanding of the specific
subdomain in terms of its 'programming vocabulary" (i.e., standard information structures and
algorithms).

However, the system should also be able to get by without any knowledge of specific
programming subdomains. Of course, without such knowledge the system will behave less
intelligently and therefore rely more upon the user to provide the domain expertise (e.g.,
substitute programming terminology for domain specific terminology). But the system should
still be functional.

LL-==

Program A c i Organization:-IndependentfProgramming..xpert 25

Program Acquisition Organization: Independent Programming Expert 25

2.6 Program Acquisition Organization: independent Programming Expert

A tremendous amount of knowledge, both about the particular programming language and
about programming in general, is required to write a correct program within the large
programming universe of symbolic processing. Much of this knowledge is independent of the
human user's choice of specification technique, and much of this knowledge is independent of
any specific subdomain of symbolic processing. Therefore, it is possible and desirable to
identify and codify this knowledge independently. This suggests an organization for the
acquisition phase that includes an independent module embodying general programming
knowledge.8 Such an organization is shown below. This is essentially the organization of the
acquisition phase of the PSI program synthesis system, in which PMB plays the role of
programming expert.

8 Another possible solution would be to simply have one enormous system that handles all

aspects of acquisition. With our current understanding of the program acquisition problem
and under current constraints on the size of programs, this is impractical. On a more
fundamental level, as knowledge bases grow larger and larger, it is important to recognize and
take advantage of any modularity inherent in the domain. A compromise would be to have
separate modules that use standardized knowledge bases. Then knowledge could be shared
when necessary.

______16

26 The Problem

Program Acquisition Organization with Independent Programming Expert

user

Trace Natural
and Domain Language

Examples i- . Expert - Processor
Expert

program fragments

Program
Model

Builder

program model

•PMB accepts fragments from one or more specification modules and one or more lomain
modules. It is responsible for building the program model independently of any particular
specification techniques and programming domains. This solution leads to a new, but more
tractable problem: designing an interface language for describing the types of informal
program fragments that are produced from external specifications.

2.7 Detailed Problem Definition: Differences between Fragments and Model

The following table and discussion summarize the differences between program fragments and
the program model, thus providing a concise definition of the model building problem. These
features all correspond to particular design goals for informal program acquisition discussed
earlier in this chapter. The remainder of the thesis defines fragments and models in more
detail, provides many examples of each, and presents the processing and underlying knowledge
base necessary to transform one into the other.

iI
Detailed Problem Definition: Differences between Fragments and Model 27

Differesices between Program Fragments and Program Model

Fragments (inpuli Model (output)
Small chunks or program .,!ion Complete program description
Written using superset ot Irn Written in VHL program modelling language

modelling language F
Many independent sources Produced only by PMIB
Arbitrarilv ordered Always ordered in same way: information

structures, procedures, algorithm
Incomplete Complete, cross-referenced
Nonexecutable Executable
Semantically inconsistent Semantically consistent
Ambiguous Unambiguous
Generic operators Specialized operators for each information

structure type
Many ways to say something Concise, high level canonical form

Fragments are explicitly limited to the description of programs (as opposed to arbitrary
problems) because of the assumption that the system will only deal with algorithms specified by
programmers.

The amount of new information conveyed by each fragment is allowed to be small in order to
provide the greatest flexibility for interactive, incremental specification. For example, a set A
might be described by separate fragments conveying the following facts: "A is a collection", "A
is unordered", "A has no repeated elements", "each instance of A has at least five elements".

Fragments are expressed using a superset of the primitives in the program modelling language
so that (1) straightforward programs may be written in the modelling language using the same
PMB mechanisms and (2) fragments will have at least the same power as the modelling
language for expressing symbolic computation programs at a very high level.

Fragments are handled independently of their source, so that more than one specification or
domain module may be active at once.

Fragments may be arbitrarily ordered to provide freedom to the user in ordering the
specification process. For example, once A has been defined to be a collection above, the other
three fragments may arrive in any order, with other fragments not referring to A occurring in
between them.

The fragments may be incomplete, semantically inconsistent, or ambiguous; may use generic
operators; and may provide more than one equivalent way of expressing a program part. Until
the fragments are built into a single model and such informalities removed, they obviously
don't form an executable program.

28 The Problem

2.8 Program Synthesis As Specification Transformation

Now we ascend to reconsider the general program synthesis problem. We have seen that this
problem is to transform a human program specification into an efficient program that meets the
specification. Each program specification that is informal or at a very high level can often be
met by hundreds of reasonable tdrget programs. The program synthesis system produces only
one of these programs: (hopefully) the one that meets the program specification most efficiently
under the known constraints.

This transformation process can be broken down into a small number of relatively sequential
and independent phases that carry out part of the overall transformation process. Each of
these phases concentrates on bringing one type of knowledge to bear on the problem. Each
phase narrows the space of programs that are still under consideration. Adjacent phases
communicate only via an appropriate interface language.

The diagram below shows the space of all possible programs being constrained further and
further by each successive knowledge level, until finally exactly one target program is produced.
The program specification is first transformed into program fragments by the application of
knowledge of particular specification techniques and the particular programming domain.
Fragments are transformed into a complete and consistent program model by the application of
general programming knowledge. Then the model is transformed into a target program by the
application of coding and target language knowledge. The middle step is the topic of this
thesis.

f

I

Programn Synthesis As Specification Transformation 29

Specification Transformation

informal VHL program, natural language, trace, etc.

program fragments

program model

target program314

31

Chapter 3. Survey of Related Work

A number of distinct research areas are related to the present work. Rather than giving a
detailed, but out-of-context discussion of them all in a single chapter early in the thesis. I only
provide a brief mention of the more important pieces of related research here. Detailed
discussions occur as appropriate in the chapters that present the relevant parts of PM B.

PMB is a program acquisition system. Artificial intelligence approaches to the program
acquisition problem, as well as related problems of program synthesis and 'automatic
programming", are surveyed in (Heidorn-76), [Green-76B]. [Biermann-76), and [Elschlager &:
Phillips-79].

The other areas covered in this chapter are the incremental acquisition of informal programs,
programmer aid systems, recognition problem solving using demons, programming
methodologies, very high level languages, knowledge representation by rules and frames, and
standard compiler technology.

3.1 Incremental Acquisition of Informal Programs

No other research appears to have attacked the problem of acquiring programs that are
specified both incrementally and informally.

The SAFE program acquisition system (Balzer et al.-78] is the closest in goals and scope to
PMB. SAFE translates from a preparsed form of natural language into a VHL language
featuring relations as its only data type. SAFE deals with some of the same issues of program
incompleteness and inconsistency, but isn't incremental or interactive.

The NLPQ system acquires simulation programs from natural language (Heidorn-72. Heidorn-
74, Heidorn-75. This was the first successful natural language program acquisition system. It
is not an incremental system, but does allow for questions at the end of specification, from the
user for verification of the acquired program and from the system to fill in any gaps left in the
program. Most inconsistencies are not discovered until the simulation program is run, and the
class of programs handled is small.

The XREP system (Wilczynski-753 deals with the problems inherent in referencing variables by
English noun phrases. XREP assumes that such a specification is parsed into a production rule
programming language, along with a set of intentions (or plan). Then the program is executed
to see if it matches the intentions.

Hobbs catalogs a number of completeness and consistency inferences and canonizing program
transformations, many of which PMB can do [Hobbs-77A, Hobbs.77B]. But he is more
interested in dealing with them at an earlier, more linguistic level, and a system encompassing
his ideas hasn't been implemented yet.

The SID verification system (Moriconi-'77, Moriconi-79) is incremental, but deals with formal
programs (in a PASCAL-like language) annotated with assertions. These are created and
changed using a standard text editor.

32 Survey of Related Work

3.2 Programmer Aid Systems

A number of attempts have been (and are being) made to provide interactive tools to support
the programming process. These are variously called programmer aids, programmer assistants,
intelligent program editors, and programming environments, but they all require the user to
program in a standard high level or very high level (VHL) language. They provide one or
more programming aids that are implicitly or explicitly invoked to take care of programming
details, make checks for errors, make suggestions to the user, etc.

In this vein, PMB might be a useful programming aid if it were provided with a
straightforward front-end parser for the surface form of the program fragment language. This
parser would generate fragments for PMB to process for completeness and semantic consistency.
The structure of such a system is depicted below.

Role of PMB in Intelligent Program Editor

user

Informal
VHL (not implemented)

Language
Parser

program fragments

.1
Program
Model

Builder

program model

An intelligent program editor along these lines is being developed by Stephen J. Westfold as
part of the CHI system (Phillips-79]. This program synthesis system is the successor to the PSI
system and incorporates many of the new ideas that arose during the development of PSI and
PMB. CHI also has a first implementation of the program reference language discussed in
Chapter 5.

The INTERLISP system [Teitelman-78] was the first to provide a good set of low level tools for
programmer assistance. These are an editor enforcing LISP syntax; a "prettyprinter" specifically

Programmer Aid Systems 33

for LISP constructs; a symbolic debugger; the "Do What I Mean" (DWIM) facility [Teitelman-
72A], featuring a spelling corrector, among other niceties; the Programmer's Assistant
[Teitelman.72B, Teitelman-77], including a history list of past user activities and commands to
manipulate them; and the program analysis package called MASTERSCOPE. SCOPE is an
extension of this package (Masinter-79].

The PCM system (Yonke-751 extends many of the INTERLISP notions to block-structured
languages such as ALGOL and PASCAL. PCM does incremental parsing and thus quickly
discovers syntactic and simple semantic errors (i.e., those determinable by looking up variable
properties in the symbol table). There is also a syntax oriented editor for PASCAL [Donzeau-
Gouge et al.-75) and one for BDL ("Business Definition Language") that uses a fancy color
display (Hammer et al.-74]. A set of routines for manipulating program parse trees within such
systems as syntax oriented editors is described in (Robinson & Parnas-73.

Work on programmer apprentices [Winograd-74, Hewitt & Smith-75, Rich & Shrobe-78, Rich et
al.-79, Waters-78, Waters-79, Shrobe-79A, Shrobe-79B, Rich-79] is aimed at assisting a
programmer with the details and with understanding a program that is being written primarily
by the programmer, rather than the system.

3.3 Recognition Problem Solving Using Demons

Demons were invented-or at least named-as a tool for pattern recognition [Selfridge-59]. They
have become a common feature of artificial intelligence languages and were popularized as the
key mechanism in a story understander [Charniak-72. PMB's use of demons attached to
templates is most similar to the control structure of the Genial Understander System (GUS)
[Bobrow et al.-77). The reasoner portion of GUS is at the back end of a natural language
understanding system. The reasoner builds up smaller trees of frames than PMB and never
manipulates them once they are completed. Our use of demons also fits nicely into Rieger's
general theory of spontaneous computation (Rieger-77].

The successive refinement paradigm is used by the automatic coding phase of PSI, which
consists of the PECOS coder (Barstow-79A] and LIBRA efficiency expert [Kant-79A. Kant-
79B]. This paradigm appears to have much in common with the basic top down, goal oriented
completion of a program model in PMB. But the coding process proceeds from a complete
program model and has total control over what subgoal to work on next, whereas acquisition of
the model only proceeds in an orderly top down fashion by default. The program acquisition
process allows informalities and is usually data driven. Typically the user will jump around
from subgoal to subgoal and even create new, unanticipated subgoals (e.g., define previously
unreferenced procedures and information structures).

3.4 Programming Methodologies

PMB allows the user to determine the order in which program parts are defined. However, this
unrestrictive methodology for program development could be restricted if desirable, e.g., in
support of structured programming. Many programming methodologies advocate writing
programs in a top down, structured fashion [Dahl et al.-72, Wirth-73]. PMB could support

i.

34 Survey of Related Work

such orders of program development in two ways. The first way, which is already available, is
to trust the user to impose a particular ordering on the fulfillment of subgoals (e.g., all
information structures must be defined before they are referenced). The other way would be to
modify PMB so that it imposes this ordering.

Most of what PMB does can be viewed as the piecewise transformation of programs. This
differs from standard program transformation work (Burstall & Darlington-77, Loveman-77,
Kibler et al.-77, Kibler-78, Balzer et al.-76) in that the program being transformed is only a
partial program and many of the transformations are designed to remove informalites from the
input form. Most program transformation research deals with source-to-source transformations,
i.e., equivalence preserving transformations done all within the same language and on complete
programs. PMB's rules of canonization are transformations of this sort.

3.5 Very High Level Languages

PMB produces a final program in the program modelling language, which is a very high level
language. Its very high level nature stems from its information structures, rather than any
fancy control structures. It is most akin to the "set oriented" languages such as SETL
[Schwartz-75) and VERS2 [Earley-74). However, systems dealing with languages such as these
concentrate on automatic coding. These systems don't do program acquisition. Therefore, the
program must be handwritten by the user.

3.6 Knowledge Representation by Rules and Frames

PMB represents knowledge as both templates and rules.

Static knowledge of model building is stored as a rule base of antecedent/consequent rules
(Davis et al.-77, Barstow-79A]. However, PMB's rules are data driven (i.e, triggered by the
antecedents being or becoming true), such as in ARS [Stallman & Sussman-77].

Dynamic knowledge (i.e., the partial program model) is stored as a tree of templates, which are
similar to structured property lists or frames [Minsky-75, Bobrow & Winograd-771.

3.7 Compiler Technology

A number of ideas in PMB have been borrowed from standard compiler theory and practice.
The notion of incrementally processing a program is borrowed from incremental compilers, e.g.,
PL/ACME [Breitbard & Wiederhold-69]. However, all of these appear to be limited to a grain
of incremental processing that is one line of text.

i Many compilers handle some of the informalities that PMB does. A common example is type
coercion. But compilers do such operations at either compile time or runtime. The philosophy
of PMB is that it is better to move such processing from runtime or coding (compile) time to
"acquisition time", before the user is out of the picture.

'35'

Chapter 4. An Example

This chapter presents in some detail a single example of PMB in action. The example is one
of the programs that have been acquired and coded by the PSI program synthesis system.

We start with an informal description of the desired program, called CLASSIFY. Then the
inputs and outputs of PSI are shown, to provide context. We present the actual dialog that a
human user carried out with the PSI parser/interpreter to specify CLASSIFY. A few program
fragments are described; they are the form of program specification that PMB receives from the
parser/interpreter. To demonstrate the output of PMB, the completed program model is listed,
along with a sample execution by the model interpreter. Finally, the most important (and
longest) section has an annotated trace of the program fragments as they are input by PMB
from the parser/interpreter and the resulting partial program model as it is built by PMB.

4.1 The CLASSIFY Program

CLASSIFY is a simple program for classifying symbolic patterns. At the heart of the
algorithm, CLASSIFY simply tests to see whether one set is a subset of another set. To
provide motivation for such a program, an application is described in parentheses along with
the abstract algorithm below. The application involves a set of qualifications that are required
for a job. The qualifications of one or more job applicants are tested against this set to see if
any applicant fits the job requirements.

CLASSIFY first inputs a sample set of items (e.g.. a list of required job qualifications), where
each item is a relation (or n-tuple). Then the program repeatedly inputs a trial set (e.g. 'he
qualifications of an applicant), tests whether the sample set (required qualifications) is a subset
of the trial set (applicant's qualifications), and prints "Fit" or 'Didn't fit" accordingly. The
program is exited if the word 'quit" is typed instead of a trial set.

CLASSIFY is typical of the size and complexity of programs that can be built by PMB.
CLASSIFY was chosen for this example because it makes use of a wide variety of modelling
language features, including all the control structures and all information structures but the
correspondence (or mapping). Because of this diversity, CLASSIFY requires the use of much
of PMB's knowledge of program models and many of its special techniques for handling
completeness, consistency, type coercion, canonization, etc.

4.2 Example Inputs and Outputs

The following diagram shows the relationship between the four inputs and outputs that are
presented in this section. The fragments and resultant model are germane to the thesis, but the
English dialog with the user and execution trace of the model are also given to provide
additional context.

r---

36 An Example F
Relationship of Inputs and Outputs Used in Example

English dialog

PSI
Parser/
Inter-
preter

program fragments4
Program
Model

Builder

program model

Program
Model
Inter-
preter

execution typescript

4.2.1 English Specification Dialog with PSI

The following dialog was held with PSI to specify CLASSIFY. Sentences from the user were
processed by the PSI parser/interpreter [Ginsparg-78. Questions from PSI were generated by
the PSI explainer [Green et al.-79]. The choice of what question to ask next was made by the
PSI dialog moderator (Steinberg-79].

J Example Inputs and Outputs 37

Specification Dialog for CLASSIFY

PSI: What is the name of the program you want to write?

User: CLASSIFY.

PSI: Does CLASSIFY have a special program type?

User: Yes, classification.

PSI: Please describe CLASSIFY.

User: CLASSIFY first inputs a concept. Then it repeatedly accepts an input scene from the
user, classifies it based on whether or not it fits the concept, and outputs this classification
to the user.

PSI: What is the structure of the concept?

User: The concept is a set of relations, each of which is a property name followed by the
names of the objects over which it holds.

PSI: What is the structure of the scene?

User: The same as the concept.

PSI: Please define what it means for a scene to fit the concept.

User: A scene fits the concept if all of the relations in the concept are in the scene.

PSI: What is the exit test of the loop?

User: Stop when the user types "quit" instead of an input scene.

PSI: What is the format of the classification output?

User: Output 'Fit" if the scene fit the concept, "Didn't fit" if it did not.

PSI: Are we finished?

User: Yes.

4.2.2 Program Fragments Input to PMB

I' Since all of the 32 fragments generated from the preceding dialog will be given in the detailed
trace of model building later in this chapter, only an example of each basic type (control
structure, primitive operation, and information structure) is given here.

The first example fragment arises from the following sentences in the preceding dialog:

38 An Example

CLASSIFY first inputs a concept. Then it repeatedly accepts an input scene from
the user, classifies it based on whether or not it fits the concept, and outputs this
classification to the user.

Actually the fragment below is only the first of a number of fragments that are gleaned from
these two sentences. A paraphrase of the fragment in terms of the above sentences is
"CLASSIFY first [does something). Then it [does something else).".

algorithm-body:
begin

input-concept;
classify-loop

end

The fragment above defines a control structure called by the unique name "algorithm-body"'.
It is a composite (similar to a compound statement in ALGOL) with two parts, called
'input-concept" and "classify-loop". These are arbitrary names representing the two things that
CLASSIFY is supposed to do. Notice that this fragment neither defines where"algorithm-body" is to be invoked in the algorithm of CLASSIFY, nor defines what
"input-concept" and "classify-loop" are, nor specifies whether the two parts are to be executed
sequentially or in parallel.

The second fragment arises from the part of this sentence that precedes the word "instead":
"Stop when the user types 'quit' instead of an input scene.".

exit-condition: input-data-prototype - quit-prototype

This fragment is a primitive operation called "exitcondition", which tests for equality between
two information structures, input-data-prototype and quit-prototype. Once again, other
fragments specify where this test is to be made. The operator is a generic equality condition
that is specialized based upon the types of its two arguments.

The final example comes from the part of this sentence before the comma: "The concept is a set
of relations, each of which is a property name followed by the names of the objects over which
it holds.":

type concept-prototype: set of relation- prototype

This fragment declares an information structure called concept-prototype. Concept- prototype is
an unordered collection without repetition of elements. The prototypic element of the
collection is a relation-prototype. The size of the collection, where it is referenced, arid the
definition of relation-prototype are not provided in this fragment.

1 Mnemonic names have been assigned wherever possible to avoid using the computer symbols
generated by PSI.

Example Inputs and Outputs 39

4.2.3 Program Model Output by PMB

Below is the program model of CLASSIFY that PMB produced. It was printed using a
PASCAL-like syntax by the readable program model generator [Pressburger-78). Information
structures have both prototypes (defined after the keyword type below) and instances of the
prototypes (defined after the keyword var). All cross-references, assertions, and other
nonessential annotations have been omitted for clarity. The program modelling language. from
which listings such as this are derived, is defined in Chapter 7.

One interesting feature of this model is input-data-prototype, which is an information
structure prototype that is an alternative of two other prototypes. This is a mutually exclusive
selector, so that an instance of input-data-prototype has to be of one type or the other, either a
sceneprototype or the string "quit". This construct is useful in recognizing nonstandard data
that mark the end of processing.

I-

m ------ ---

40 An Example

CLASSIFY Program Model

program classify

type
input-data-prototype: alternative of {scene.prototype, quit-prototype},

scenefprototype: set of relation-prototype,
concept-prototype: set of relation-prototype,
rilation-prototype: plex of <relation-name: string, arguments: list of string>,
quit-prototype: string - quit";

var
input-data: input -data-prototype,
scene, fit scene: scene-prototype,
concept, fit-concept: concept-prototype,
fitresult: Boolean;

procedure fit(fitscene, fit-concept): Boolean;
fit-concept c fit-scene;

begin
concept #- input(concept-prototype, user, 'Ready for concept");
until exit

repeat
begin

input-data ,- input(input-data -prototype, user, "Ready");
if inputdata - quit-prototype then assert-exit-condition(exit);
scene #- inputdata;
fit-result - fit(scene, concept);
case

fit-result: inform _user('Fit");
-fit-result: inform..user("Didn't fit")

endcase
end

finally
exit:

endloop
end

Program Model Structure

The actual program model is a tree2 of templates, each containing a number of slots and
associated values. The top level of the CLASSIFY model is shown below.

Each template has a class, and most classes have a particular type. The remaining required or
optional slots depend upon the class and type. Some slots take simple values, and some point to
other templates.

2 More accurately a graph because of the cross-reference pointers that are added to the basic

top down program structure

Example Inputs and Outputs 41

Internal Structure of Program Model

Name: CLASSIFY
Class: program model
Domain:
classification

/ \
Top level Information

structures

Procedures

Name: algorithmbody Name: fit Name: concept~prototype
Class: Class: procedure Class:
control structure Type returned: Boolean information structure

Type: composite Instances: Type: set
Orderings: sequential classification Instances: concept,

Parameters: fit scene, fit_concept
fitconcept Size: a 5

I I
ubparts Top level AIU for elements

/SIinputconcept classify.loop procedure-body relation.prototype

OE

- -- ----- --

42 An Example

4.2.4 Typescript of Sample Interpreted Execution

Below is one executir , of the CLASSIFY program model shown in the preceding section.
CLASSIFY was exe ed interpretively by the program model interpreter [Nelson-76], which
always uses the samt default data structure implementations. The example used in this run is
the job classification task discussed earlier. Here the minimum qualifications for the job we
have in mind are lots of programming experience and the enjoyment of LISP over ALGOL.
Other qualifications (e.g., an interest in artificial intelligence) are optional.

Typescript of CLASSIFY Execution

.-I NTERPRET (CLASSIFY)

Initializing CLASSIFY ...

Entering Interpreter at ALGORITHM-BODY:

REAOY FOR CONCEPT
* ((ENJOYS-MORE (LISP ALGOL)) (PROGRAMMING-EXPERIENCE (MUCH)))

READY
*((ENJOYS-MORE (LISP ALGOL)))

DIDN'T FIT

READY
*((PROGRAMMING-EXPERIENCE (MUCH)))

DIDN'T FIT

READY
* ((ENJOYS-MORE (APL LISP)) (PROGRAMMING-EXPERIENCE (MUCH)))

DIDN'T FIT

READY
* ((ENJOYS-MORE (LISP ALGOL)) (PROGRAMMING-EXPERIENCE (LITTLE)))
DIDN'T FIT

READY

* ((ENJOYS-MORE (LISP ALGOL)) (PROGRAMMING-EXPERIENCE (MUCH)))

FIT

READY
*((ENJOYS-MORE (LISP ALGOL)) (INTEREST (Al)) (PROGRAMMING-EXPERIENCE (MUCH)))

FIT

READY
E*QUIT Ie

Exi ting Interpreter ...

Example Inputs and Outputs 43

OKAY

4.3 Annotated Trace of Model Building

This section presents an annotated trace of PMB building the program model for CLASSIFY.
Included in the trace are all S2 program fragments in the order they were received by PM B
from the PSI parser/interpreter, an English description of any important or novel processing
that took place for each fragment, and a snapshot of the partial program model and
outstanding demons after each group of related fragments was processed. Most other details of
the original trace (e.g., explicit rule invocations) have been left out for the sake of brevity and
clarity.

This example provides a good demonstration of PMB's control structure because the order in
which fragments arrive is particularly perverse: All of the information structure declarations
arrive after the algorithm itself.3 This forces PMB to create many demons to wait for the
information structures to be defined before consistency checks, type coercion, etc., can be
completed. Also, instead of the one procedure being defined before the main algorithm, the
procedure is defined in the middle of the top down definition of the main algorithm,
immediately after the procedure is called. Although information structures and procedures can
be processed in any order, the most efficient order for PMB to process fragments is all
information structures first, then all procedures, and the main algorithm body last.4 But
information structures and procedures may be interspersed throughout the main algorithm
body in any order.

PMB's control structure is a loop that inputs and then processes program fragments. The
processing of the first two fragments is traced in greater detail than the rest, in order to show
PMB focusing on individual slots of a fragment, creating model templates, and creating
subgoals. The discussion of later fragments emphasizes the inference of pieces of program and
the creation and triggering of demons. Although only fourteen demons are discussed, dozens of
other, more mundane ones are created and executed during the building of CLASSIFY.

Comments about the trace are indented. Demons are assigned unique identification numbers
from I through 14 in the same order as demon creation. Fragments and models are printed in
a PASCAL-like notation, although they are maintained internally as property lists, as evidenced
below in the low level trace of processing. Most computer generated symbols have been
replaced by more mnemonic words corresponding to the program model presented in an earlier
section. Each partial program model is printed at the top of a new page so that the incremental
building up of the model can be more easily discerned. Lines that are new or have changed
from the immediately preceding model and demon list are denoted by the character "I" at the
right margin. Missing parts of the partial program model that are still to be filled in by later
fragments are denoted by "???".

3 Note that in this example the parserlinterpreter did not generate fragments in precisely the
same order as their contents were specified in the English dialog.

4 This observation of a computer model correlates well with one typical programming style.

... il..

44 An Example

Annotated Trace of Building CLASSIFY Model

The first fragment simply names the program to be written and the top level
algorithm.

Inputting fragment:

program classify;
algorithm-body

PMB is initialized with the goal of wanting to know the name of the program
model. The first fragment fulfills this goal, so the root template of the program
model tree is created and given the name CLASSIFY. A subgoal is created to
determine its top level algorithm. The domain of the CLASSIFY program is an
example of a simple default value. The default value ("unknown") is stored in the
program model, but a subgoal (question) is also created to allow the default to be
overridden. This subgoal is marked as optional since a valid answer is already
known.

Processing PROGRAI-IODEL. NAIE = CLASSIFY
Creating template CLASSIFY with value

CLASSIFY.CLASS = PROGRA/I-tOOEL
CLASSIFY.OOMAIN = UNKNOJN

Creating subgoal:
CLASSIFY.OO1AIN =??

Creating subgoal:
CLASSIFY. TOP-LEVEL . ???

Done processing PROGRAt1-IIOOEL.NAME = CLASSIFY

The name of the top level of the algorithm occurs in the same fragment. Since
there is an outstanding subgoal that wants to determine the top level, it is processed
next. Since a template named "algorithm-body" doesn't exist already, a new
template is created and a two way pointer between it and the CLASSIFY template
is inserted. Because the new template represents the top level algorithm of the
model, PMB assigns it a class of operational unit. An operational unit can be any
control structure, primitive operation, or procedure call, Then PMB asks for what
specific type within this class the template is.

Processing CLASSIFY. TOP-LEVEL - ALGORITHI-BODY
Creating template ALGORITHI-BODY with value

ALGORI THM-BODY.CLASS = OPERATIONAL-UNIT
Creating subgoal:

ALGORITHM1-BOOY.TYPE =???
Done processing CLASSIFY. TOP-LEVEL = ALGORI THI-BOOY

In partial program models, the first of which is given below, names preceding
colons are unique template names (analogous to statement labels in ALGOL) that
allow fragments to refer to different parts of the model. Besides the explicit
question about the top level algorithm of CLASSIFY (denoted below by "???"),
there are always two implicit (i.e., set up internally by PWVB and always present)
questions that will handle definitions of information structures and procedures.
These questions aren't shown.

L __7

Annotated Trace of Miodel Building 45

Current program model:

program classify;

algorithm-body: ???

Current demons active:
None

The second fragment describes the top level algorithm as a composite of two steps.

Inputting fragment:

algorithm-body:
begin

input-concept;
classify-loop

end

A composite is a compound statement with a partial ordering on the execution of
its subparts. The partial ordering is optional and defaults to sequential.

Processing ALGORI THM-BODY. TYPE = COMPOSITE
Creating subgoal:

ALGORITHM-BOOY.SUBPARTS ???
Creating subgoal:

ALGORITHIM-BODY.ORDERINGS ???
Done processing ALGORITHM1-BODY. TYPE . COIPOSITE

The two subparts must be operational units because they are the steps of a
composite. However, their specific types (e.g., input, test) are still unknown.

Processing ALGORI THII-BOQY. SUBPARTS = (INPUT-CONCEPT CLASSIFY-LOOP)
Creating template INPUT-CONCEPT with value

INPUT-CONCEPT.CLASS = OPERATIONAL-UNIT
Creating subgoal:

INPUT-CONCEPT. TYPE =
Creating template CLASSIFY-LOOP with value

CLASSIFY-LOOP. CLASS - OPERATIONAL-UNIT
Creating subgoal:

CLASSIFY-LOOP. TYPE ???
Done processing ALGORI rHr-BOOY. SUBPARTS = (INPUT-CONCEPT CLASSIFY-LOOP)

After this point, we won't show the details of PMB processing particular slots of
fragments, creating templates, and creating subgoals. Rather, we will emphasize the
inference of pieces of program and the croation and triggering of demons. Of the
subgoals remaining at this point, the two in brackets below are implicit.

9-&

46 Aii Example

Sutbgoals sti i Iremaining:
CLASSIFY.OO7AIN - ?
ALGORITHM-BOOY.OROERINGS ??
INPUT-CONCEPT. TYPE - ?
CLASSIFY-LOOP. TYPE - ?
[CLASSIFY. INFORM1AT ION-STRUCTURES ???
ICLASSIFY.PROCEOURES = ??

The two required questions regarding the types of "input-concept" and
.classifyiloop' also appear below in the current program model.

Annotated Trace of Model Building 47

Current program model:

program class ify;

begin
input-concept: ???;
classify-loop: ???

end

Current demons active:
None

The next fragment defines the input primitive operation that reads in the concept.
The three arguments of an input operation are the prototype of the information
structure to be input, the source of the input, and a prompt string to be output just
prior to input.

Inputting fragment:

input-concept: input(conceptprototype, user, conceptprompt)

PMB infers that the object of type concept-prototype should be saved in an
instance of that type. So it creates one that is called concept here for mnemonic
reasons and puts the input inside a remember operation (denoted by "-" below).

48 An Example

Current program model:

program classify;

type

concept-prototype: ???,
concept-prompt: string - ???;

var concept: concept-prototype;

begin
concept +- input(concept-prototype, user. concept-prompt);
classify..Ioop: ???

end

Current demons active:

None

Inputting fragment:

classify-loop:
until exit (exit-condition)

repeat loop-body
finally exit:

endloop

The above fragment defines a loop with a jump out of "loop-body" to exit block
"exit" when the Boolean condition "exit-condition" is true.

At this point PMB can't tell where "exit-condition" is located, so it is shown
separately from the main algorithm. Demon I is created to make sure that
"exit-condition" is contained within the body of the loop. Since the context of
"exit-condition" within the algorithm isn't known yet, the demon is set up to await
the definition of the control structure that contains "exit-condition". In general, a
demon may require the values of many undefined slots in order to evaluate its
antecedents. However, a demon is implemented "linearly", i.e., it only waits for one
slot at a time, moving from slot to slot until all required slot values are defined.

Demon 2 is created to put the exit condition inside a test with an
assert-exit-condition as its true branch. This will cause the loop to be exited when
the exit condition becomes true.

Annotated Trace of Model Building 49

Current program model:

program classify;

type

concept prototype: ???,
concept-prompt: string -?"

var
concept: concept-prototype;

begin
concept +- input(conceptprototype, user, concept-prompt);
until exit

repeat
loop-body: ???

finally
exit:

endloop
end

exit-condition: ???

Current demons active:
Demon 1: awaiting control structure containing "exit_condition"
Demon 2: awaiting control structure containing "exitcondition"

Inputting fragment:

loop-body:
begin

loopinput;
exit-condition;
classification;
output-classification

end

Since the location of "exit-condition" within the algorithm is now defined, Demon I
is triggered and finds that "exit-condition" is within the composite "loop body".
Since this is not the loop that Demon I was hoping to find, it creates a new
instance of itself to await the definition of what control structure iloop-body" is
inside. Since this is already known, the new instance of the demon doesn't have to
wait. It immediately discovers that "loop-body" is inside the desired loop and thus,
by transitivity, so is "exit-condition". Now Demon I is destroyed, as are most
demons after they succeed.

Demon 2 creates a test with exitcondition" as its predicate and an
assert.exit-condition that will leave the loop as its true action. Then Demon 2 goes
out of existence.

s0 An Example

Current program model:

program classify;

type
concept -..prot otype: ???,
concept-prompt: string ???

var
concept: concept prototype;

begin
concept +- i-nput(concept-prototype, user, concept -prompt);
until exit

repeat
begin

loop-input: ???;
if exit-condition: ??? then assert -exit -condition(ex it);
classification: ???;
output-classification: ???

end
finally

ex it:
endloop

end

Current demons active:

Inputting fragment:

loop-input: in put(in put-data- prototype, user, input-data-rompt)

The input fragment above is handled similarly to the previous input.

Inputting fragment:

exit-condiation: input da (a -rototype - quit-prototype

Demon 3 is created to specialize the generic operator are-equal into the appropriate
primitive operation, depending on the types of its arguments. In this case, Demon
3 specializes are-equal into an is-of-ype when input-data-prototype is determined
to be an information structure alternative and quit-.prot otype one of its
subalternatives. To succeed, this demon has to wait for the definition of
input-data-prootype.

j Inputting fragment:

classification: fit(scene-prooeype, concept- .. prot otype)

Annotated Trace of Model Building 51

PMB infers that a procedure named fit exists. Demon 4 will ensure that there are
the same number of actual and formal parameters when fit is defined.

A disambiguation of the second argument occurs at this point. Since
concept prototype is known to be an information structure prototype, it can't be
used as the argument in a procedure call. Instead, PMB replaces it in the call with
the only instance of concept-prototype, concept. In addition, concept is designated
the "primary instance" of concept-prototype, to be used if a similar situation should
arise in the future.

In contrast, scene-prototype is mentioned for the first time in the current fragment.
Since PMB can't see into the future, scene-prototype is assumed to be an instance
now. Later, scene-prototype will be defined as a prototype, and an instance will be
created for it then.

Demons 5 and 6 will ensure that the types of the two actual parameters,
scene-prototype and concept, are in agreement with those of the two formal
parameters. If a type is not specified for a formal parameter, then its type will be
coerced by (inherited from) the corresponding actual parameter.

Demon 7 is created to coerce the type returned by the procedure-instance
(procedure call) to be the same as that returned by the procedure definition.

52 An Example

Current program model:

program classify;

type
input-data-prototype: ???,
concept-prototype: M,
input-data-prompt: string - ,
concept-prompt: string - M,
quit-prototype: ???;

var
input-data: input-data-prototype,
scene-prototype: M??,
concept: concept..prototype;

procedure fit(???): ???;

begin
concept #- input(conceptprototype, user, concept-prompt);
until exit

repeat
begin

input-data ,- input(input-data-prototype, user, input-data-prompt);
if input-data - quit-prototype then assert -exit.condition(exit);
fit(scene.prototype, concept,
output-classification: ???

end
finally

exit:
endloop

end

Current demons active:
Demon 3: awaiting type of input-data-prototype
Demon 4: awaiting formal parameters of fit
Demon S: awaiting formal parameters of fit
Demon 6: awaiting formal parameters of fit
Demon 7: awaiting type returned by fit

Now the top down exposition of the main algorithm is interrupted in order to
define thefit procedure, which is called in the previous fragment.

Inputting fragment:1 procedure fit(fitscene.fit-concept): Boolean;
procedure-body

Demon 4 succeeds when it finds that the number of formal parameters of fit is the
same as the number in the call to it.

Annotated Trace of Model Building 53

PMB infers that the two formal parameters are the names of information structure
instances and creates them. Demons 5 and 6, the type coercers. are moved ahead
to wait for the definitions of the prototypes of the actual parameters.
scene-prototyp'e and conice pt, so that type coercion can be done on the
corresponding formal parameters, which are now known.

Demon 7 stores the type of procedure fit, Booleani, into the procedure-instance.

Inputting fragment:

procedure-.bod y: (V relation - rootype) truei-or-all-body

This is a true-for.al1 Boolean test, which determines whether some condition is
true for all elements of a collection. Demon 8 is created to canonize true-for.a1
into an is-.subset if this becomes appropriate based on the definition of
"true-for-allbody".

Inputting fragment:

true-for-alL-body: antecedent-is.element :) conseq uent-is.element

Demon 8 moves ahead to await the definition of 'antecedent-is-.element".

Inputting fragment:

antecedentis-element: relation-rototype c fitconcept

Demon 8 notices that "antecedentis-element" is an is-ejlemenzt test whose element
argument is relation-.prototype, which is the referent variable of the true.for-a.ll.
So Demon 8 moves ahead to await the definition of fit-concept.

Demon 9 is created to guarantee type consistency between relation -prototy pe, the
element of the is..ekment, and the as yet unknown prototypic element of the
collection fit-..cncept.

Inputting fragment:

consequentis-element: relation -prototype c fit ..scene

This is-.element fragment is handled similarly to the previous one. Demon 10 is set
up to check for type consistency.

54 An Example

Current program model:

program classify;

type
input-data-prototype: ???,
concept-prototype: ???,
input-data -prompt: string ???,
concept-prompt: string - M
quit-prototype: ???;

var
input-data: input-data-prototype,
scene-prototype: ???,
fit-scene: ???,
concept: concept prototype,fitconcept: ???,
relation -prototype: ???;

procedure fit(fit-scene, fit_concept. Boolean;
Y relation-prototype I relation-prototype e fit-concept 2 relation -prototype E fit-scene; I

begin
concept 4- input(concept-prototype, user, concept-prompt);
until exit

repeat
begin

input-data 4- input(input-data-prototype, user, inputdata-prompt);
if input-data . quit-prototype then assert.exit-condition(exit);
fit(sceneprototype, concept;
output-classification: ???

end

finally
ex it:

endloop
end

Current demons active:
Demon 3: awaiting type of input-data-prototype
Demon 5: awaiting prototype of scene-prototype
Demon 6: awaiting prototype of concept
Demon 8: awaiting prototype of fit-concept
Demon 9: awaiting prototype of relation -prototype
Demon 18: awaiting prototype of relation.-prototype

Inputting fragment:

output-classification:
case

fit-true-,

endcase

Annotated Trace of Model Building 55

Inputting fragment:

fit-true: fit-result: print-fit

Inputting fragment:

print-fit: output(fi:tprototype, user)

Demon II is created to transform the output into the simpler inform-user
operation, if fit-prototype turns out to be a string constant.

Inputting fragment:

fitJfalse: notjfit.result: print-didn't.fit

Inputting fragment:

not.fit.result: -fit-result

Inputting fragment:

print-didn'tfit: output(didn't-fit.prototype, user)

Demon 12 is created to transform the output into an inform-user operation. if
didn't-fit-prototype is a string constant.

4

56 An Example

Current program model:

program classify;

type
input-data-prototype: ???,
concept -prototype: ???,
input-data-prompt: string - ???,
concept-prompt: string = ???,
quit-prototype: ???,
fit-prototype.: ???,
didn't-fifprototype: ???;

var
input-data: input-data-prototype,
scene-.p rototype: ?
fit Lcene: ???,
concept: concept-prototype,
fit-concept: ???,

relation -prototype: ???;

procedure fit(fit-scene, fit-concept): Boolean;

Y relation -prototype I relation prototype e fit-concept 3 relation-prototype e fit-scene;

begin
concept +- input(concept-prototype, user, conceptprompt);
until exit

repeat
begin

input-data 4. input(input-data-prototype, user, input-data-prompt);
if input-data , quit-prototype then assertexit-condition(exit);
fit(cene-prototype, concept);
case

fit-result: ???: out putftprototype, user);
-fit-result: ???: output(didn't-fitprototype, user)

endcase
end

finally
exit:

endloop
end

Current demons active:
Demon 3: awaiting type of input-data-prototype
Demon 5: awaiting prototype of scene-prototype
Demon 6: awaiting prototype of concept
Demon 8: awaiting prototype of fit-concept
Demon 9: awaiting prototype of relation-prototype
Demon 10: awaiting prototype of relation -prototype
Demon 11: awaiting type of fitprototype
Demon 12: awai ting type of didn't-fit prototype

Annotated Trace of Model Building 57

Finally PMB receives the fragments that define information structure prototypes.
Now many demons that were set up earlier in the trace are fired off and succeed
with their appointed checks and transformations.

An instance of the alternative input -data-prototype is at any time an instance of

exactly one of the alternative prototypes, scene-prototype or quit-prototype.

Inputting fragment:

type input-data- prototype: alternative of {scene prototype, quit-prototype}

Inputdata-prototype is defined as an alternative prototype, and quit-prototype
already is a prototype. Scene-prototype should either already be a prototype or be
defined as one now. But scene-prototype was previously defined as an information
structure instance. So PMB copies this instance to a new template, which will be
called scene, that is created by PMB. All pointers to the instance that used to point
to scene-prototype from other templates are updated to point to scene. Then PMB
creates the prototype in its place. Scene is marked as the primary instance of
scene-prototype.

Now that scene-prototype is known to be the prototype of scene, one of the two type
coercion demons, Demon 5, coerces fit-scene to be of the same type as scene by
making fitscene be an instance of scene-prototype too.

Demon 3 specializes the are-equal operator into an is-of-type, which is specifically
for testing which option an instance of an alternative is.5

Demon 13 is created to guarantee that quit-prototype is in the tree of alternatives
for input-data-prototype. It is, so Demon 13 succeeds.

Demon 14 is created to insert a select -alternative operation (denoted by the "-"

operator) after the is-of-type. It succeeds because there are only two alternatives,
and if input-data isn't of type quit-prototype, then it must be of type
scaneprototype.

Inputting fragment:

.ype quit-prototype: string . "quit"

T

SThe " symbol is still used to denote the operation in the program model.

58 An Example

Current program model:

program classify;

type
input-data-prototype: alternative of fscene-prototype, quit-prototype),
scene-prototype: ???,
concept -prototype: ???,
iniut-data-prompt: string
concept-prompt: string - ???,
quit-prototype: string - 'quit",
fit-prototype: ???,
didnI t4filprototype: ???;

var
input-data: input-dataprototype,
scene, fit-scene: scene prototype,
concept: concept-prototype,
fit-concept: ???,
relation -prototype: ???;

procedure fit(fitscene, fit.concept): Boolean;
V relation-prototype I relation-prototype E fit-concept z relation-prototype e fit-scene;

begin
concept #- input(concept-prototype, user, concept_prompt);
until exit

repeat
begin

input-data 4- input(input-data-prototype, user, input-data-prompt);
if input-data = quit-prototype then assert -exit -condition(exic);
scene 4.- input-data;
fit(scene, concept);
case

fit-result: ???: out put(fit-prototype, user);
-fit-result: ???: out put(didn't-fit-prototype, user)

endcase
end

finally
ex it:

endloop
end

Current demons active:
Demon 6: awaiting prototype of concept
Demon 8: awaiting prototype of fit-concept
Demon 9: awaiting prototype of relation -prototype

Demon I: awaiting prototype of relation -prototype

Demon 11: awaiting type of fit-prototype
Demon 12: awaiting type of didn't -fitprototype

Annotated Trace of Model Building 59

Inputting fragment:

type didn't-fit-prototype. string - "Didn't fit"

At this point Demon 12 transforms the output operation that prints out
didn't-fit-prototype into an informuser that prints the string constant "Didn't fit".

Inputting fragment:

type fit-prototype: string - "Fit"

Demon 11 transforms the other output into an inform-user.

Inputting fragment:

type relation-prototype: plex of <relation-name: relation-name, arguments: arguments>

Relation -prototype is already defined as an instance, so the instance is copied to a
new template called relation, and the new prototype relation-prototype takes its
place.

The is-element consistency demons, Demons 9 and 10, now know what the element
slots of the is-element operations are, but they must still wait for the definitions of
the prototypic elements of their collection slots.

Inputting fragment-

type relation-name: atom

Atoms are treated equivalently to strings by PMB.

Inputting fragment:

type argument: atom

Argument is an unknown template name because it is defined before arguments and
isn't otherwise referenced by any fragment. So PMB creates a new information
structure prototype and -ssumes it will get referenced later.

Inputting fragment:

type arguments: list of argument

Argument is referenced here.

ii-

60 An Example

Current program model:

program classify;

type
input-data-prototype: alternative of {scene prototype, quit-prototype},
scene-prototype: ???,
concept-prototype: ?,
relation-prototype: plex of <relation-name: string, arguments: list of string>,
input-data-prompt: string - ???,
concept-prompt: string . ???,
quit-prototype: string = "quit";

var
input-data: input data- prototype,
scene, fit scene: scene-prototype,
concept: concept-prototype,
fit-concept: ???,
relation: relation-prototype;

procedure fit(fitscene, fit-concept): Boolean;
Y relation I relation e fit-concept D relation e fit-scene;

begin
concept 4- input(concept-prototype, user, concept-prompt);
until exit

repeat
begin

input._data +- input(input-data-prototype, user, input-data-prompt);
if input-data - quit.prototype then assert.exit-condition(exit);
scene +- input-data;
fit(scene, concept);
case

fit-result: ???: inform -user("Fit");
-fit-result: ???: inform user("Didn't fit")

endcase
end

finally
ex it:

endloop
end

Current demons active:
Demon 6: awaiting prototype of concept
Demon 8: awaiting prototype of fit-concept
Demon 9: awaiting prototype of fit-concept
Demon 18: awa i t i ng scene-prototype

Inputting fragment:

type concept-prompt: string - "Ready for concept"

Annotated Trace of Model Building 61

Inputting fragment:

type input-data -prompt: string - "Ready"

Inputting fragment:

fit-result +- classification

A Boolean information structure instance called fit-result is created and the result
of the classification test is remembered in it.

Inputting fragment:

type scene -prototype: set of relation-prototype

Now Demon 10, the is-element consistency check, succeeds because the prototypic
element of the collection slot of the is-element is now defined and matches the type
of the element slot.

•- -

62 An Example

Current program model:

program classify;

type
inputdata.prototype: alternative of {scene prototype, quit-prototype),
scene-prototype: set of relation-prototype,
concept-prototype: ???,
relation-prototype: plex of <relation-name: string, arguments: list of string>,
quit-prototype: string - "quit";

var
input-data: input-data-prototype,
scene, fit-scene: scene-prototype,
concept: concept-prototype,
fit-concept: ???,
relation: relation-prototype,
fit-result: Boolean;

procedure fit(fitscene, fit-concept): Boolean;
Y relation I relation E fit-concept z relation c fit-scene;

begin
concept +- input(concept-prototype, user, "Ready for concept");
until exit

repeat
begin

input-data 4- input(input-data-prototype, user, "Ready");
if input-data = quit-prototype then assert exitcondition(ex it);
scene - input-data;
fit-result *-fit(scene, concept);
case~fit-result: inform -user("Fit");

-fit-result: informuser("Didn't fit")
endcase

end
finally

exit:
endloop

end

Current demons active:
Demon 6: awaiting prototype of concept
Demon 8.: awa i t i ng proto type of fit-concept
Demon 9: awai ting prototype of fit-concept

i Inputting fragment:

type concept -prototype: set of relation-prototype

Annotated Trace of Model Building 63

Now that the prototype of concept is defined, the second type coercion demon.
Demon 6, coerces fit-concept to be of the same type as concept by making
fit-concept be an instance of concept-prototype too.6

Knowing that fit-concept is an instance of concept-prototype also allows Demons 8
and 9 to proceed. Demon 9, one of the two is-element consistency checks from the
fit procedure, succeeds because the prototypic element of the collection slot of the
is-element is now defined and matches the type of the element slot,
relation -prototype.

Finally, all information structures referenced in the procedure body are defined and
all consistency demons have succeeded. So Demon 8 canonizes the true-for-all by
transforming it, along with the implies and the two is-elements it contains, into an
is-subset.

7

Program model complete.

At the end of model building, 37 optional questions and no required questions are
left, so CLASSIFY is complete. The optional questions that remain are mostly
about information structure prototypes that have already been inferred, sizes of
collections, probabilities of conditions, optional constant values of primitives, etc.

Although all fourteen demons that have been tracked throughout the trace are
gone, a few other demons are left alive at the end of model building. Some
consistency demons were designed to watch for certain conditions forever. For
example, when the true-for-all Boolean test was created earlier, a group of demons
was created to guarantee that the referent information structure of the true-for-all"
wasn't ever referenced outside the body of the true-forall. Sometimes
transformation demons are created to watch for possible canonizations, but the
antecedents of these demons are never satisfied. There weren't any such
transformation demons in this example.

6 This demon could also have been designed to succeed earlier rather than waiting for
concept-prototype to be explicitly defined, since concept_prototype was assumed to be the
prototype of concept.

7 It is interesting to observe the power of a few additional rules. In addition to the is__subset
transformation demon, Demon 8, another demon could have been set up to watch the
true-for-all within procedure fit. Both fit-concept and fit-scene occur as collections in
is-element tests with the same element argument, relation. From this the demon would infer
that fit-concept and fit-scene are collections with the same prototypic element. When PM B's
question about the prototypic element of scene-prototype was answered, the question about the
prototypic element of concept -prototype would become superfluous, and vice versa. However.
the two collections might still have other characteristics, e.g., one might be ordered and the
other unordered.

64 An ExampleV

Final program model:

prograin classify;

type ..
Iinput-data.4rototype alternative of {scene. prototype, quit-.prototype),

scene-p rototyp e: set of relation -prot otype,
concept _.p rototy pe: set of relation-. prototype,
relation.-p rot otype: plex of <relation-name: string, arguments: list of string>,
quit-prototype: string - "q uit";

var
input-.data: in put data-prototype,
scene, fit -..scene: scene-prototype,
concept, fit concep~t: concept -prot oty pe,
fit-result: Boolean;

procedure fit(fit-scene, fit-concept): Boolea n;
fi t-.concept c fit-scene;

begin
concept #.- input(concept-prototype, user, 'Ready for concept");
until exit

repeat
input-data ~- input(input data - prototype, user, "Read)");
if input-..data - quit-.prototype then assert -ejxit-con ditio n(ex it);
scene +- input-data;
fit-result .- fit(scene, concept);

csfit-result: inform user("F it");

-fit-result: inform user("D idn't fit")

edendCase

finally
exit:

endloop
end

Current demons active:I
None

65

Chapter 5. The Input: Program Fragments

Input to PMB is in the form of a sequence of informal pieces of program description called
program fragments. The program fragment language provides a uniform means of feeding
information to PMB from any other program acquisition knowledge source. Fragments are
designed to convey small chunks of information corresponding to, for example, all or part of a
sentence from a specification dialog. The flexibility of fragments allows a program specification
to be given incrementally in an arbitrary order when the user is in control of the specification
process.

For a procedure to be considered an algorithm, it must possess the quality of "definiteness".
This property requires that each step of the procedure be known and be precisely, rigorously,
and unambiguously defined (Knuth-73A, page 51. An incremental and informal program
specification using fragments does not constitute an executable algorithm. Until all of the
fragments are assembled, the procedure they specify is incomplete. In addition, it is not well-
defined if any informalities remain.

A fragment consists of two parts: what is to be done to the program model that is under
construction (i.e., defining or modifying some part) and where this action is to take place (i.e.,
which part of the model is to be affected). Specification of the "where" part is limited to

explicitly naming unique points in the model now, but a language for referring to the parts of a
program has been designed. We will discuss the format of fragments and then their content, in
terms of what is to be done and where.

5.1 Format of Fragments

To understand fragments, one must understand the program model, which they are used to
specify. By the end of model building, the program model constitutes a computer program that
is (I) executable; (2) written at a very high level (VHL); and (3) made up of information
structure definitions, procedure declarations, a main algorithm consisting of control structures
and primitive operations, and assertions. The model is represented as a parse tree. Elements of
the tree are templates, which define the program in a hierarchy of information structures,
control structures, and primitive operations. Each template consists of a set of slot/value pairs.
The value of the type slot (e.g., loop) determines the other slots that are required or optional.
Depending on the slot, a slot value may be such things as a string, a pointer to another
template, or a list structure that points to more than one template.

A fragment specifies a template in the model and one or more slot/value pairs of that template.
In the most perverse case, the fragments specify templates in an arbitrary order, and each
fragment contains only one new piece of information about a template. In the most
straightforward case, the fragments specify the templates in a top down traversal (either depth
or breadth first), and the information about each template is contained in a single fragment. Of
course, the typical sequence of fragments lies somewhere between these extremes. For example,
an information structure may be described first, followed by the algorithm that uses it, or vice
versa. A procedure may be defined before or after the procedure-instances that call it.

As an example, we give the two extremes for fragments that specify (I) the prototype of a set

66 The Input: Program Fragments

(an unordered collection without repetitions) of relations and (2) a specific instance of an
operation that checks if relation is an element of the collection concept. First are their
definitions in just two fragments.

Minimum Number of Fragments

where- name: relations
what: type: collection

ordered: nil
repetitions: nil
A IUfor-eleinents: relation

where- name: membership-test
what: type: is-element

element: relation
collection: concept

Following is the same information expressed in a number of fragments in a nearly arbitrary
order.

Maximum Number of Fragments

where- name: relations
what: type: collection

where: name: membership-test
what: type: is-element

where: name: relations
what: AIU-forelements: relation

where: name: relations
what: repetitions: nil

where- name, membership-test
what: collection: concept

where: name: membership-test
what: element: relation

where: name: relations
what: ordered: nil

No formal experiments have been performed to determine the adequacy of program fragments
for specifying programs in the most desirable ways. However, it is clear that fragments come a
long way toward providing the necessary flexibility. Fragments provide a means for specifying
parts of a program in the minutest detail and in an arbitrary order. The program reference

1 The only important restriction on the order of slot definitions is that the type of a template
must be contained in the first fragment about that template.

Format of Fragments 67

language is based on observations of common ways that people refer to parts of a program.
The other features of fragments, such as incompleteness, inconsistency, and ambiguity, are also
based on common assumptions that people make when specifying programs. There is no claim
that this set of properties is complete, however.

In contrast to the fragment language, the typical computer program is specified to a
programming language processor all at once, as a computer file or deck of cards. This program
is a sequence of statements in a high level language, appearing in a very restricted order and
using a precise and limited syntax. To be accepted by the processor, the program must be
complete, consistent, and unambiguous.

Human users are not expected to interface directly to PMB. PMB was designed so that it may
operate in a robust acquisition environment featuring many other knowledge sources, such as
experts on natural language, inference from traces, and specific programming domains. In a
more straightforward environment, fragments would be produced by a deterministic parser for
an informal VHL surface language. For example, the two fragments presented above might
look like this in a surface language modelled after PASCAL:

type concept: set of relation;

membership -test: relation E concept

Throughout the thesis, fragments are expressed in this language.

5.2 Program Specification Information

This section discusses the information conveyed by a fragment about a particular template in
the program model. The first subsection discusses the types of fragments. The next three
subsections discuss the properties of fragments that distinguish them from program model
templates: incompleteness, inconsistency, and variety of specification.

5.2.1 Types of Fragments

The kinds of fragments (i.e., as determined by the *type" slot of the fragment) form a superset
of the kinds of templates in the program modelling language. Fragments without informalities
correspond directly to parts of templates in the program modelling language. Hence, the class
of programs that can bespecified with fragments is a superset of those that can be specified in
the program modelling language.

Below is a list of the types of fragments. Types followed by an asterisk correspond to modelconstructs by the same name. A complete definition of these types is deferred until Chapter '7

on the program modelling language. However, any aspect of informality possessed by a type is
discussed here. Types not followed by an asterisk are unique to the fragment language andprovide for some form of informality in specification. These types are discussed below.

68 The Input: Program Fragments

Constructs of the Program Fragment Language

Abstract Information Units (AJUs) Abstract Control Units (ACUs)
primitive* composite.*
string test!:,
atom case,:
Boolean condition/action
collection,: loop:.,
set exit-pair
multiset p roced u re:.,
ordered-set program._modek,
list
correspondenc'*
plex:.
subpart
alternative,:
A IU-Instance,.

Primitive Operations (POPs) Primitive Operations
with Boolean Values with Non-Boolean Values

not:, result-of
and:' correspondent-of,.i
implies,:,
is-element*
is-su bset"
true-for-alle,

has-correspondent*
is_of-type,.
are-equal*

* part-of

* Primitive Operation with Side Effects Value Labelling Primitive Operation
select-alternative,:, remember:,

I1/0 Primitive Operations Control Flow Primitive Operations
inputs, assert-ex itcondition,
output* procedure-instance'.
inform-user,. return,:*

Some fragment types merely allow abbreviated specification of a program model construct with
a particular set of predefined parameters (slot values). String, atom, and Boolean are
abbreviations for an information structure of type primitive and subtype string, string, and
Boolean, respectively. Similarly, set, multiset, ordered-set, and list are abbreviations for the
four types of collections.

Some model templates have slots that take complicated values. Since a slot value cannot be
modified once it has been defined, the contents of a slot cannot be incrementally specified. In
order to allow remedy this situation, separate fragment types exist for complicated slots. These
types are for the subparts of a plex, the condition/actions of a case, and the exit-pairs of a
loop.

Program Specification Information 69

Result-of is an informal operator that takes as its argument the name of a construct that
returns a value somewhere else in the model. Rejult-of returns the last value that its argument
did, whether or not this value has been explicitly stored for such retrieval. Typically an
information structure instance is created to hold the value, and a remember is placed around the
construct to store its latest value in the instance, each time the construct is computed.

5.2.2 Incompleteness

All fragments, including the low level ones that map directly into model templates, require
fewer details than eventually appear in the corresponding model. The simplest example of this
is the extensive cross-references of the program model that are automatically generated by
PMB.

Slots defining simple or optional program properties may be omitted from fragments; default
values are provided by PMB. For example, the format for inputting a collection will default
to a LISP list. Size information about a collection is optional, hence the default is none.

Slots can often be omitted if the appropriate value can be inferred from the context provided
by the program model, whether immediately or after processing future fragments. A good
example of inference is the type coercion of information structures such as procedure
parameters and quantified variables.

5.2.3 Inconsistency

Certain inconsistencies that appear in fragments are automatically removed by PMB. One such
inconsistency is called "type/token ambiguity" or, in the language of program models,
prototype/instance ambiguity. The modelling language distinguishes between the prototype of
an information structure and the one or more actual instances of it that are manipulated by the
algorithm. If there is only one instance of a prototype, PMB allows fragments to skip defining
the instance and make all data references dii' ctly to the prototype instead.

One type of informality of specification allows for many interpretations of a program fragment,
depending upon the program model context. PMB specializes a generic operator that is not
part of the modelling language into the appropriate primitive operation in the modelling
language, based upon the operands. The semantics of these operators depend on the types of
their arguments, so PMB does the appropriate operator coercion. For example, the fragment
predicate part-of may be translated into one of the primitive operations is-element, issubset,
has-correspondent (does a domain element map to anything), or is-component (of a plex),
depending upon its arguments and how they are represented in the program model. The
fragment predicate are-equal may result in one of the following primitive operations: is-empty
(is a collection empty), are-equal, are-com ponents-equal, and is-otype (is an alternative
instance of a particular type).

70 The Input: Program Fragments

5.2.4 Variety of Specification

Within the modelling language there may be a number of formally equivalent ways to encode
the same expression or information structure. PMB recognizes the most common forms of such
information and procedural structures and transforms them into concise, high level, canonical
forms. The intent is to map equivalent expressions into one canonical form whenever they can
be detected. For example, expressions that are quantified over elements of a set are canonized
to the corresponding expression using set notation:

(V x) x E A : x oE B

(a Boolean operation that determines if every element x in collection A is also in collection B)
becomes

AcB

(is A a subset of B).

Below is another example, an English description of a set of fragments describing a set of
marked elements.

A concept is a set of relations. A relation is a plex (record structure) consisting of a
relation name and arguments. Additionally, each relation is marked by a label.

The notion of "marking" an information structure is merely one way of creating a mapping
from that structure into another. Since the modelling language has an explicit correspondence
structure to handle this type of mapping, the canonization is done:

A concept is a correspondence from relations to labels. A relation is a plex
consisting of a relation name and arguments.

5.3 Program Reference Information

We have seen that program fragments can update parts of the program model in arbitrary
order. The particular part, or template, currently must be referred to explicitly by its unique
name. In addition, fragments referring to two different entities of a program model cannot be
specified to occur in exactly the same location in the model: One must explicitly occur before
the other. Thus, we have not addressed the problem of inferring control structures or
sequencing constraints [Wile et al.-77].

There are many ways to refer to a point of interest in a program other than by explicit name.
The more useful of these ways have been incorporated into a program reference language for
specifying part or parts of a program. This language has not been implemented in PMB
because a general reference capability wasn't necessary for PMB to function within its original
context of the PSI program synthesis system. The techniques include reference to the program
considered as a linear string of text and as a static syntactic structure, reference based upon the
current context in the model (i.e., position of the last previous reference), reference based upon
the historical order of prior references, reference based upon the semantics of the program

Program Reference Information 71

model, and reference based upon the pragmatics of the program model (i.e., involving domain
knowledge).

Pointing directly at the desired program piece on a display screen with a pointing device (e.g.,
light pen or mouse) is obviously useful too, but can't be used to refer to the parts of a large
system that can't fit on the screen or be searched visually by scrolling the screen. Pointing isn't
adequate for specifying qualifying predicates either. Perhaps most important, a general
purpose reference language should be usable by other programs, not just humans with a
pointer. This form of reference is not considered further here.

Only a few examples of patterns in the reference language are given here; the entire language
is outlined in greater detail in Appendix A. The first example makes use of syntactic reference.
The following expression might be used to represent the statement, "the fifth output operation
in the program that occurs somewhere after a conditional that is three levels down inside some
block":

template n I (type-output, ffoo .2 bar .* n),foo.type.composite, bar.type-test) S

The expression within parentheses above matches all such outputs, and the subscript on the
expression selects the fifth one (if it exists). The expression within braces is a template pattern
in which the names of templates are separated by special pattern variables. "." constrains the
templates or either side of it to be separated by zero or more templates in lexical order. ".12'
constrains its neighbors to have exactly two intervening lexical scope levels.

Using the symbol "&" to denote the current template, the following contextual expression
specifies the closest test template above the current template:

template n I ({In . :,, type-test),

As an example of semantic reference, the following pattern finds all (control structure) templates
that contain below them a set operation that returns a Boolean value:

template n I {n .* x), type(x)Eset-operations, returns(x).Boolean

(. .

73

Chapter 6. Control Structure: The Rule Interpreter

The Program. Model Builder is a rule based problem solver. It consists of two main parts. a set
of antecedent (data driven) rules containing the system's model building knowledge and a rule
interpreter control structure for choosing and applying the rules. The rule interpreter of PM'B
is the subject of this chapter; the details of the rules themselves are covered in Chapter 8.

A fundamental assumption of this work is that the user of PMB has the option of controlling
the interaction, in other words, that the program specification dialog allows mixed initiative
(Carbonell-70A, Carbonell-70B, Bobrow et al.-77, Steinberg-79]. One result of this was
discussed in the previous chapter: the design of the program fragment language, which is
PMB's input language.

The other result of the decision to allow mixed initiative is a control structure that can deal
with subgoals in any order and that can therefore deal with an almost arbitrarily incomplete
program model. This means that the model may be incomplete at any level, from an entire
procedure being missing to a single parameter of a single operation being left unspecified.
PMB delays its operations only until the required arguments are completely specified.
Incremental operation would be lost if PMB waited longer than this. This technique may be
applicable to other problems that require a symbolic knowledge base to be acquired,
maintained, and modified incrementally. Examples of possible applications are speech
understanding, image understanding, other signal processing domains, and knowledge
acquisition domains.

The. problem of building a complete program model consists of a sequence of subproblems of
the form: Given a partial program model and a new program fragment, update the model by
making appropriate use of the new information in the fragment. As the program model is
built, each new fragment answers some questions that were outstanding, but in turn may lead to
new questions. Thus, the process of building the program model can be viewed as one of
problem reduction or subgoaling, with the root of the goal tree being the completion of the
program model, the set of unanswered questions representing the unexpanded subgoal nodes,
program fragments providing the information necessary either to complete a node or expand it
into further subgoals, and PMB's knowledge base about programming providing the basis for
generating potential subgoal trees. To process subgoals that are completely internal to PMB
(e.g., consistency checks), demon rules are created that delay execution until their prerequisite
information in the program model has been filled in from fragments.

The overall dataflow within PMB is depicted below. The boxes represent the major databases
within the system, except that the one labelled "user and other experts" is external to PMB.
Lines denote the transfer of information between boxes, with arrows denoting the direction of
flow. Labels denote the activities that cause the associated transfers. Activities under explicit
control of the rule interpreter are denoted by solid lines; those that are implicit are denoted by
dashed lines.

hK

74 Control Structure: The Rule Interpreter

PMB Control Structure

user
and

other
experts

input program fragment

outstanding
questions,
response

rules

generate

questions create demons

apply response rulesI
monitor model

program demons
model apply demons

--

Observe that PMB's subgoaling is data driven [Charniak-72). PMB doesn't try any
complicated goal driven reasoning on its own. This would result in hypothesizing about what
the program model might look like, in the form of trees of incomplete subgoals. The space of
possible programs is much too large for this approach to be useful. Instead, PMB maintains
incomplete subgoals only at the leaves of the subgoal tree and then patiently waits for the user
to get around to fulfilling these subgoals. The rules for processing the solution to a particular
subgoal include all of the pertinent actions such as creating new subgoals, fulfilling other
subgoals in the tree leaves by inference, setting up internal demons, etc.

The remainder of the chapter covers in turn data driven subgoaling, demons, and a
comparison to structured programming, related problem solvers, and other possible approaches.

External Control Structure: Data Driven Subgoaling 75

6.1 External Control Structure: Data Driven Subgoaling

The control structure of PMB may be viewed as a hybrid problem solver with two modes of
operation. The default mode is a search of a limited AND/OR goal tree in which outstanding
subgoals are worked on in an arbitrary order determined externally to PM B. The other mode
allows new subgoals to be created by the user and then worked on. The program below is a
simplified' specification of the top level control structure of PMB. It will be explained
throughout the rest of this section.

Top Level Control Structure

create-template(program--model);
outstanding-questions +- nil;
ask-question(programmodel.name);
ask..question(program-model.top-level);
while inputlfragment) do

Y template e match(fragment,program-model) do
if 3 question F outstanding-questions I answersQfragmentquestion)

then Y question 4 outstanding-questions I answers(fragmentquestion) do
V rule a response.rules(question) do until invoke(rule) finally

outstanding.questions +- outstanding-questions -question}
else create-subtree(tem plate);

out put(program -model);
return(if 3 question E outstanding-lquestions I type(question) = required then false else true)

We examine the default operation of PMB first. The top level goal of PMB is to form a
complete program model, as represented by a unique template in the model called the
program-model template. In this discussion the variable program-model refers to both the top
level template and the entire tree of templates making up the model. In order to attain this
goal, PMB creates this top level program-model template and generates two subgoals (via the
function ask-question) for acquiring (1) the name of the program and (2) a top-level algorithm
in terms of control structures and primitive operations operating on instances of the
information structures.2 For each subgoal, ask-question also generates a question that is sent
out to PMB's external environment (e.g., the user or other expert programs). A question has
the form of a template name and the name of a slot within the template that has yet to be filled
in. PMB adds a new question onto the front of its global list of outstanding-questions.
Associated with each question is stored a set of response-rules for dealing with the possible
responses to that question. In addition, the question is tagged as "optional" if a default response
has already been assumed. At the end of model building, the model is considered complete only
if no "required" questions remain on the list of outstanding-questions, since any "optional"
questions have already been answered by default.

For example, checks for error conditions are omitted.

2 As is discussed later in this section, at the level of the program-model template there are
always implicit goals outstanding for new procedure and information structure definitions.
There are also two optional slots that take atomic values defining the domain of the program
(e.g., concept learning) and the user's name for this template. The latter slot is an optional slot
in every template.

____ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ __ i

76 Control Structure: The Rule Interpreter

Recall that a fragment consists of two parts: (1) a pattern that specifies which template in the
model is being referred to and (2) one or more slot/value pairs of that template. When PMB
inputs a new program fragment, the program reference part is matched against the current
program-model to determine a set of templates ordered by the order in which they were found
by the matcher, according to the program reference language introduced in Chapter 5.
Currently this match is only done on unique template names, so exactly one template matches.
Then for each template suggested, the list of outstanding-questions is searched linearly to
determine if the new fragment answers one of the outstanding-questions. It does so if the
template name in question is the same as that in fragment and if the slot name in question is
one of those present in fragment. If fragment and question correspond, then the responserules
associated with question are applied in the fixed order in which they were stored until one
succeeds (i.e., returns true), and question is deleted from the list of outstanding-questions. The
successful rule either completely answers the question by filling in the value of a template slot or
causes a new level of subgoals (and questions) to be generated. This process continues until all
outstanding-questions of type "required" have been answered, indicating the program-model is
complete. Then the final model is output.

A rule is invoked (by the function invoke) within a simple context consisting of a set of global
variables whose names are known by the rules. For response rules, these are the name of the
current template, the name of the slot being filled in template, and the value from fragment to
go in that slot. From this context, the rule currently being invoked may reference the current
fragment, test and modify the entire program-model, ask new questions (and add them to the
outstanding-questions list), and create demons (discussed in the next section). If the model is
modified as a side effect of invoking rule, a demon that was created by an earlier rule may be
indirectly triggered by the act of modification. The rule invocation function invoke returns a
value of true if and only if the rule it invoked succeeded. This allows invoke to be used as a
predicate, as in invoke(rule) in the algorithm above.

But what happens when a fragment doesn't answer any of the outstanding-questions (subgoals)?
This occurs, for example, when a procedure or an information structure is defined before it has
been referenced in the algorithm portion of the program-model. In this case PMB creates a
new template and a new goal tree (denoted by the function create-subtree in the algorithm
above) to acquire the new piece of program-model created by this program fragment. Also, by
storing the name of the new template in the list of all information structures or procedures, a
list kept in the program-model template, PMIB notes that the implicit goal of completing these
lists has been furthered. Later on, presumably, the new template and the independent subgoal
tree of which it is the root will prove to be the solution to a subgoal in the main tree. Not all
types of procedural templates can be defined before they are referenced. This mode has been
;mited to procedure definitions, since control structures and primitive operations can be put
inside a procedure declaration if it is necessary to define them out of order.

Notice that if the first question in the list of outstanding questions is always answered next,
-- an a depth first expansion of the goal tree ensues. Changing to breadth first would be trivial:

v. id,;r1 new questions to the end of the list instead of the beginning. In fact, most of the
-,in, sm is in place to handle a best first order if appropriate ordering heuristics were
,* Thv haven't been written because topic coverage during the specification dialog is

- ' -b other means, such as the user or another knowledge source (e.g., the PSI
. .. i m as pS:.r-.b erg.79]).

a."-,. ,n'remental as possible. It processes one fragment completely before

External Control Structure: Data Driven Subgoaling 77 V

accepting another. In the course of processing one fragment, a response rule will typically
succeed for each slot/value pair in the fragment. Each of these rules may generate one or more
questions, but handling the answer to any of them must wait until they are all asked (i.e., put
on the list of outstanding questions). This has the advantage that related subgoals are
generated at the same time, so that expectations are set up that allow PMB to deal with any of
a number of related questions that the user might choose to address. To achieve the utmost in
incremental operation, if this is desired, each fragment would be limited by its originator to
only one slot/value pair.

Program modification is another case in which no question is answered by a fragment.
However, in this case the template named already exists. The fragment's information is meant
to supplant what was in the template before. A general program modification capability has
not been implemented.

6.2 Internal Subgoals: Demons

You've got your demons; you've got desires. Well, I've got a few of my own.
-"One of These Nights" 3

by Don Henley and Glenn Frey (The Eagles)

In addition to the rules that handle responses to questions sent externally, other rules handle
subgoals that are remain internal to PMB, such as consistency tests between two or more
templates, inference rules that allow a subgoal to be inferred indirectly when a different subgoal
is answered explicitly, and transformation rules that delete or modify entire templates. If such a
rule can't succeed because information is missing from the model, the rule waits until the
necessary information is provided. Such simple demon rules are attached, along with a simple
context of global parameters, to a particular, slot in a particular template, waiting for the value

there to change.4 Whenever this happens, all the demons awaiting that slot value are

reinvoked within their own stored context.5 This is much more efficient than invoking all
demons each time a slot value changes anywhere in the model. Each demon that succeeds is

removed from the demon list.6

3 Benchmark Music and Kicking Bear Music

4 Response rules could also be handled by attaching them to the appropriate template and slot.
However, there are theoretical arguments for keeping response rules, which represent externally
asked questions about slots required for completing the program model, at a separate and
higher level than the demons [Rieger-77]. Pragmatically, it is then easier to see if any questions
are left unanswered, change priorities of questions, periodically ask again questions that haven't
been answered yet, allow the user to ask questions about the questions, etc.I s To guarantee that all changes to slots are noticed, rules use a standard set of accessing
functions to make all references to the program model. Those functions that modify the model
call the demon invocation mechanism immediately afterward.

6 Demons may also be explicitly deleted ("garbage collected") by other rules.

78 Control Structure: The Rule Interpreter

Demon rules are of two types, those that may and may not make structural modifications to the
model. These types create two priority classes for demon execution, corresponding to those rules
that make consistency checks or small inferences (e.g., fill in a slot) and those that make program
transformations that alter a template's type (and hence its slots) or even its existence. A
consistency demon (or a slot filler) can't be executed until the slot whose value will be referenced
by the demon has been filled in by another rule. A transformation demon can't be executed
until (1) the slot to be referenced has been filled in by another rule and (2) all outstanding
consistency checks for the entire template have been done. The following demon invocation
mechanism is used each time some slot in template changes value.

Demon Invocation Mechanism

V demon - template.demons I awaited- lot(demon)=,lot do
if type(demon)-consistency

then if invoke(demon) A -3 other-demon (template.demons I type(other.demon)=consistency
then V transform E template.demons

I type(transform)-transformation A ready(transform) do
if -invoke(transform) then mark-not-ready(transform)

else if -3 other-demon a template.demons I type(other.demon)-consistency
then invoke(demon)
else mark .ready(demon)

Since a transformation demon may not be fired if any consistency demons remain in the same
template, in such a case a transformation demon whose slot has changed is marked ready
instead of invoking it. Then, when the last consistency demon of a template has succeeded, the
algorithm goes back and tries all of the ready transformation demons.

No consideration has been made in PMB for the incorporation of metalevel heuristics,
especially those for efficiency [Kant-79A, Kant-79B3. They would prove useful mainly in the
ordering of feasible transformations. Currently all transformations relevant to a given template
are applied in an arbitrary order, and there is no backtracking. The first transformation to
succeed will be carried out; the others will be forgotten. Efficiency heuristics should guide the
transformation process by attempting to (1) minimize the running time and space of the
program model at its very high level (e.g., when interpreted using default implementations of
information structures) and (2) maximize the degree to which the model uses very high level
(VHL) constructs so as to maximize the freedom to choose efficient implementations when the
model is coded (Barstow-79A].

6.2.1 Compound Demons

Often a number of slot values must be filled before a demon can perform as intended. In this
case, a compound demon rule is used. A compound demon may be thought of as a "cascade", an
ordered set of simple demons such that only one is active at a time. The first of these simple
demons waits (only if necessary) for the first required slot to be filled in. Then the antecedent
that references this slot value is evaluated. If It is true, then the first simple demon completes its

activities by setting up the second simple demon to wait for the next slot value to arrive, and so
on. After the last slot value is defined, the last simple demon evaluates the final antecedent. If
this antecedent is true, then the action part of the compound demon is executed and the entire
compound demon goes out of existence. If any antecedent evaluates to false, then the

Internal Subgoals: Demons 79

else-action of the compound demon is executed instead. Compound demons have the same
two types as simple demons-consistency and transformation.

The technique of attaching demons to different templates and slots in succession is greatly
automated by the rule expander. This rule "compiler" converts a compound demon that
contains a declarative antecedent pattern into a series of separate simple demons, one per slot
value used in the pattern. These demons utilize the same invocation mechanism as other

simple demons, discussed above.7

There is often a natural partial ordering to the slot values required by the antecedents of a
compound demon. The numerous slot values needed by a demon are often closely related in
the space of model templates. In particular, it is typical for a pattern to first bind pattern
variables to the values of one or more slots in one template, then the values of slots in templates
pointed to by the first group of slots, etc., until there are hooks into an entire subtree of the
model. Since the subtree will often be defined in some top down order, it is natural to order the
slots this way too. From all the complete orderings of slot value bindings that are possible
within the constraints of the partial ordering, the rule expander selects one arbitrarily for
implementation of the pattern match.

A problem with the current implementation of compound demons arises from the interaction of
the ordering of slot value monitoring and the existence of an else-action, an action taken
whenever an antecedent fails. If the else-action contains error processing for a consistency
check that has failed, then we wish this failure to be noted as soon as possible, i.e., as soon as
one of the demon's antecedents is known to be false. Since the visiting of slot values is strictly
ordered, a conjunct that is false may not be discovered until much later in the specification
dialog, thus defeating the desire for incremental operation. An obvious, if not pleasing, way to
restore fully incremental operation would be to create separate demons for the negation of each
antecedent of a compound demon. The else-action would be removed from the original
compound demon and made the action of each of the new demons. The compound demon,
sans else-action, would remain to handle the case of success. Another solution would be to
have all antecedents of a compound demon represented by demons, one per antecedent, all
active in parallel. Whenever one of them failed, it would have to garbage collect the rest.

6.3 Comparison to Structured Programming

If questions are answered in the same order as they are posed, then a top down, depth first
specification of the program model occurs. The first thing specified is the name of the program.
Then the control structure at the top level of the program is defined. Then the first control
structure or primitive operation just beneath the top level is completely defined, followed by the
second, and so on. Whenever a previously unmentioned information structure or procedure is
given as a slot value, questions pursue the details of this new entity until it is completely
defined.

This ordering of subgoals provides a simple form of top down, structured program
development. Whether or not this particular search order is a reasonable one for structured
programming is not the point. Even structured programmers don't agree on the order in which

7 The syntax and semantics of compound rules are discussed more fully in Chapter 8.

80 Control Structure: The Rule Interpreter

parts of a program should be filled out. The point is that PMB's technique accommodates
nearly any order for defining the parts of the program.

The philosophy is one that assumes that only the user can ultimately know when to do what.
For example, the user may suddenly remember an important detail required by a part of the
program not currently under discussion and may want to add it to that part before the detail is
forgotten again. Notice that this same flexibility is essential for program debugging and
modification.8 One must be able to access and change a particular program model part on
demand. It might be claimed that the proper use of structured programming and verification
will someday make debugging obsolete, but the need for program modification in the light of
changing design specifications can't be dismissed so easily.

Because of the simplicity and generality of PMB's control structure, it should be
straightforward to impose particular subgoal orderings. For depth first, the list of outstanding
questions would be restricted to being a queue in which only the question at the front can be
answered next. For best first tree expansion, a set of heuristics would reorder the queue of
outstanding questions each time a new question was added.

Experimentation along these lines might aid our understanding of the human programming
process. For example, we might choose a target programming task in a particular domain, have
a number of expert (or some other level) programmers use PMB in its mixed initiative mode,
and monitor how they go about building up the program [Brooks-75A, Brooks-75B, Brooks-771.
From these experiments, heuristics would be developed to be incorporated as metarules
governing PMB's question asking. We might learn that programming is too idiosyncratic to
make such heuristics useful in general. Or the appropriate set of heuristics for most
programmers might vary from domain to domain or even from program to program within the
same domain.

6.4 Related Problem Solvers

6.4.1 The Recognition Paradigm

The problem solving techniques used in PMB comprise one instance of the "recognition
paradigm" [Minsky-75, Bobrow & Winograd-77). The key aspect of recognition is the
acquisition of knowledge by pattern matching and forward inference, as exemplified in
UNDERSTAND [Hayes & Simon-742 and HEARSAY-I [Lesser et a].-75, Lesser & Erman-771.
The general methodology involves a system that accepts bits of information about some domain
from a user and integrates this information into a global database (e.g., a 'blackboard" or set of
frames) that represents the system's understanding of the situation up until then. The system
recognizes the relevance of the new input to its internal model of the world. The system uses a
recognition process of some kind (e.g., pattern matching) to determine to what parts of the
database the new input is relevant, then updates those parts appropriately.

a We distinguish between debugging and modification. Debugging is the process of changing a
program that doesn't meet its design goals so that it will. Modification is the process of
changing a program that already meets its original design goals so that it will meet new ones.
In either case, the same system flexibility is needed.

Related Problem Solvers 81

PMB fits into the recognition paradigm very well. The global database is the program model
tree being constructed. Inputs in the form of program fragments are matched against this tree,
and then the tree is updated and inferences are made. The major new twist that PINB adds is
the capability for having the user (or external system) specify, via the program reference
language, which part of the model is to be updated. In earlier applications of the recognition
paradigm, natural language and speech understanding, the possible order of topics is much
more constrained by what has come before.

6.4.2 GUS

The reasoning portion of GUS, the "Genial Understander System" [Bobrow et al.-77J, is a
simple recognition system with a control structure similar to that of PMB. During a mixed
initiative natural language dialog, GUS acquires the parameters of a simple round trip, such as
a travel agent might set up over the telephone. The canonical trip scenario is represented by a
set of prototype frames that get instantiated into the equivalent of PM B's templates. A slot in a
frame instance may have a simple value or point to another frame. GUS starts out with a
single frame representing a trip and proceeds to ask questions about all the slots in that frame
until all required slots are Filled in. This process typically involves the creation of more frames,
filling in their slots, etc.

GUS expects every dialog to be about trip planning and, in fact, has only one trip scenario.
PvfB expects every dialog to specify a program, but has no preconception of the program
beyond the language in which it must be written. The typical model built by PMB is larger
than the trip scenario used by GUS.

Although both GUS and PMB are mixed initiative systems, GUS's default is for the system to
control the dialog, and PMfB's default is to let the user control it. GUS asks for slot values in a
depth first order. GUS processes the next information received, regardless of whether this
information is related in any way to the question just asked. Then GUS repeats a depth first
search for the next outstanding question. GUS will (eventually) ask the previous question
again if an indirect answer didn't lead to inferences that fill in the slot asked for. In contrast.
PMB has no predisposition to any particular order for answering questions. Although it asks
questions in a depth first order (at least locally), it doesn't ask a question a second time (unless
required questions are left outstanding when fragments stop arriving) and doesn't try to gain

control over the interaction.9

GUS will ask a question ahead of its default, depth first order if a slot value is required for
some reasoning process currently taking place. Otherwise, it won't deviate from the default
order even when a new frame instance is created. Because a trip plan is still useful when only
partially complete, it is possible for a dialog to be complcted without all questions being
answered. PMB, because it is building an executable program model, has a fixed set of slots for
each template that are required to be filled in by the end of the dialog. Since PMB knows
which slots will be needed, it asks for them when a template is created.

GUS's knowledge resides primarily in its frame prototypes. This knowledge includes the slot
names, simple goal seeking "servant" routines for filling in the slots, and simple demons for

9 It would be simple to have a command that causes PMB to ask again the first question on its
queue.

!i --- --

82 Control Structure: The Rule Interpreter

making inferences or consistency checks when a slot gets filled in. There are no compound
demons. PMB's knowledge resides in its rule base: rules that create templates and explicit
subgoals (questions), response rules that process answers, and rules that are attached to
templates as demons. GUS's prototypes are easy to understand because all of the reltvant
information is in one place. But the sharing of knowledge among templates is probably easier
when it is in the form of rules. For example, this allows PMB to create a template of unknown
type and specialize it later into a template with known slots. More important is the fact that a
GUS instance always refers back to its prototype for the names of relevant servants and
demons. PMB attaches its demons to each template, which allows different instances of each
template type to have a different set of demons attached at a given time. This allows demons to
come and go as needed during model building. Of course, since GUS's demons are arbitrary
programs, they could be given enough preconditions so as to have the same effect.

A final distinction between the two systems is that GUS never modifies or destroys frame
instances once they have been created. PMB's templates can be deleted or altered by a
transformation demon, once enough slots are filled in to allow the transformation to proceed. j

6.4.3 Demon Regimes

The compound demons of PMB are one kind of "trigger pattern", consisting of associative,
nonassociative, and computable components, as introduced in Rieger's theory of spontaneous
computation tRie-er-77]. The associative component of our compound demons is restricted to
triggering when simple predicates involving a single slot value become true. The
nonassociative component is limited to evaluating the same simple predicates for slot values that
are known to have values already. The computable component is one or more require
statements, each with an axbitrary LISP expression to be evaluated.

Rieger introduces the notion of "pressure" versus "pulse" activation of demons. The simpler,
pulse model reevaluates all antecedents (or at least enough to know that one isn't true) each time
something changes that might bear on the value of one of them, until they are all true. The
pressure model uses the notion of a "trigger tree" that allows each antecedent to be evaluated
just once after it becomes true. The fact that it is true is stored so that when the final
antecedent becomes true, it will notice that all the others are too and will proceed to execute the
demon's body.

The matching mechanism of the ARS (Antecedent Reasoning System) language (Stallman &
Sussman-77] uses pulse activation so that its internal state can be updated to reflect changes in
old assumptions. ARS simultaneously monitors all changes in the database that might make
true one of the antecedents of a demon. All demons are stored in a single decision tree that
determines which demons are triggered by a new fact. This is but one example of how
monolithic, general purpose knowledge bases (e.g., those whose basic unit is an S-expression),
associated demon bases, etc. are less efficient than frame oriented structures. In a frame system,

demons may be attached to particular slots of a frame, thus affording constant retrieval time.

When ARS notices a change that might affect a demon, all of its antecedents are evaluated to
see if the demon body can be executed. If not, no partial information is retained about which
antecedents are already true. But in some cases, an ARS demon can proceed even though some
information is missing because antecedents are divided into mandatory and optional ones. This
scheme has an advantage over that used in PMB in that ARS automatically checks that

Related Problem Solvers 83

enough of the antecedents are true just prior to executing the demon's body. But this is done
at the expense of needlessly reevaluating many true conjunots each time some of the others are
false. Assuming all of the conjuncts are required and nonj becomes false after once becoming
true, the best case occurs when the first of the n conjuncts to be evaluated becomes true last.
Then only that conjunct will be reevaluated-n times-and the total number of evaluations is
approximately 2n. The worst case happens when the conjuncts become true in the same order
as they are evaluated. Then the evaluation time is order n2.

PMB uses a form of pressure activation in which antecedents are ordered so that only one is
actively monitoring the database at a time, rather than all of the nontrue conjuncts as with
trigger trees.10 Thus, exactly n evaluations are done. Since only one conjunct is active at a
time, some storage space is saved and, depending on how the database is implemented,
monitoring time may be saved also.

In general, however, this scheme could be dangerous in an environment in which database
changes are allowed, such as in program modification. A change could result in a demon
conjunct that was true earlier now becoming false, after the demon has already found it true.
The cure for this potential problem is to reevaluate all conjuncts once, just before executing the
demon body. In the case in which the demon succeeds (i.e., all the conjuncts are still true), this
algorithm does exactly 2n - I evaluations. The case in which one or more conjuncts are now
false can most easily be handled by reinttializing the demon to wait to evaluate all conjuncts
again. Let p be the probability that, when the last conjunct becomes true, all of the rest are still
true. Then the expected value for the number of evaluations is about 2nip. Thus, as long as a
lower bound on p exists, we are assured that the algorithm is linear for all cases.

6.4.4 Processes

Another way to view demons is as processes that block until particular conditions are met.
This view has resulted in a compiler for ALCOL68 that uses demon-like processes instead of
multiple compiling passes to handle information that arrives in nonlinear order [Banatre et al.-
791. This compiler handles the problems of type coercion and storage allocation in a language
in which data declarations aren't required to occur at the start of blocks.

6.5 Other Approaches

6.5.1 MYCIN

The MYCIN system for diagnosing bacterial infections [Shortliffe-76] is a well-known rule
based system. However, it's rules are mostly in consequent (or backward chaining) format
(Davis et al.-771, rather than the antecedent (or forward chaining) format primarily used by
PMB. This bias reflects a design decision that accepted the constraint that the system is in
complete control of the problem solving dialog. Thus, MYCIN's top down subgoaling is
equivalent to a PMB specification dialog in which there is no user initiative and for which

"0 PMB's passing of bindings from already matched conjuncts to the currently active one is a
simple form of Rieger's notion of the *splitting" of spontaneous computations.

84 Control Structure: The Rule Interpreter

straightforward subgoaling therefore works. PM B's inferencing approach was developed
because we felt that, given the difficult task domain of writing computer programs, any rigid
dialog format would stifle programmer creativity and lead to too much user frustration to prove
successful.

6.5.2 SAFE

The Specification Acquisition from Experts (SAFE) system [Balzer et al..78] takes a novel
approach to some of the program synthesis issues dealt with by PMB. SAFE is a three phase.
noninteractive program synthesis system that converts a program specification into a VHL
language version of it. The three phases cover linguistic, planning (ordering), and meta-
evaluation (completion and consistency) knowledge. SAFE has acquired programs for message
processing and for scheduling timeshared resources.

SAFE's first phase inputs parsed English sentences specifying relatively complete, independent
parts of a program. This phase infers domain knowledge in the form of the objects that exist
and the relations that hold between them [Goldman et al.-77]. In contrast, PSI was designed to
have precodifled domain knowledge available from a separate domain expert, and no attempt is
made to learn anything new about the domain while the system is running. PMB itself has no
knowledge of the particular application domain of the program model.

The second phase of SAFE analyzes where program variables are produced and consumed, in
order to create a partial ordering of the pieces of the program into an executable form [Wile et
al.-77]. This is required because ambiguous, demon-like, parallel specifications may be input to
SAFE, mainly because of the application domain. Although no work in this direction has been
done for PMB, it would certainly be useful.

The final phase partially symbolically executes ("meta-evaluates") the program to determine its
completeness and consistency [Balzer et al.- 7]. This phase can discover missing procedure
parameters and often infer what they are from type information and context. The final
program is written in an Al language called AP/I, in which relation is the only data type. The
fact that this language is quite a bit higher level than the program modelling language
produced by PMB (e.g., it has a demon-like control structure) may make AP/I program
acquisition somewhat easier. SAFE doesn't have a coding phase that transforms the AP/l
program into an efficient implementation; AP/l wasn't especially designed with this in mind.

The meta-evaluation phase of SAFE corresponds most closely to PMB in terms of the types of
processing it does on programs. The fundamental design difference is that SAFE is not an
interactive, incremental system. The meta-evaluator isn't called until the program is nearly
complete. Hence, it makes sense to attempt to evaluate the program symbolically (or even
interpretively using test data [Wilczynski-753) to see if any problems remain. This approach
will not work in a system such as PMB, which is designed to work incrementally, gleaning as
much information from each new program fragment as possible and providing immediate
feedback. To summarize the fundamental difference, SAFE defers inferences about
completeness and consistency until the program can be symbolically evaluated; PMB makes
inferences as soon as enough information is present to do so.

85

Chapter 7. The Output: Program Modelling Language

The knowledge base of PMB may be divided into two parts: dynamic and static. The
dynamic knowledge is that which varies from one run of PM B to the next. This is represented
during a run by the partial program model that is being built up and at the end of model
building by the completed program model. The nature of the program modelling language in
which these models are written is the subject of this chapter. The static knowledge base is the
body of rules that are used to build a program model from fragments. These rules are the
topic of the next chapter.

The program modelling language includes (1) information structures, (2) control structures, (3)
primitive operations (which are embedded within control structures and which operate on
information structures), and (4) optional assertions attached to any of the other types of model
elements.i Each of these four topics is treated in a separate section.

The program model produced by PMB is so termed because of a desire to closely model the
corresponding program in the user's head and because it is an abstract, implementation
independent program specification that may actually lead to many different concrete
implementations. A program model is essentially a highly annotated program written in a very
high level (VHL) language. A model can actually be executed, albeit slowly.2

The program model is written in a VHL language in order to (I) keep the parts of the model
at a level not too far below the user's own conceptualization of the problem and free of
unnecessary detail; (2) allow detailed algorithm and data structure selection to proceed in a
separate, nonincremental phase; and (3) keep the synthesis problem tractable for PMB. The
use of a VHL language, either by machine or human, is part of the natural evolution of
expressibility in computer programming from programming in raw binary machine language
through assembly language, macro languages, FORTRAN, and the more advanced high level
languages of today (e.g., ALGOL, LISP, PASCAL). In fact, until only ten years ago the term
aautomatic programming" referred to the development of the assemblers, macro expanders, and
compilers for these earlier languages.

The modelling language is designed to easily express common programs in the general area of
symbolic computation (e.g., set and list processing, symbolic concept formation, information
retrieval). In addition, its constructs are amenable to machine codification and automatic
synthesis. The VHL nature of the language comes mainly from its information structures and
the primitive operations that are allowed on them, rather than from complex control structures
(e.g., backtracking, pattern directed function invocation) and the database mechanisms necessary
to support them (e.g., context trees) that are found in Al languages [Bobrow & Raphael-74.

The original specifications of the information structures, control structures, and primitive

operations are due to David R. Barstow. The language has evolved considerably from that
point.

2 A program model interpreter exists for helping the user verify the correctness of the model

and for gathering runtime statistics on collection sizes and branching probabilities for efficiency
analysis (Nelson-76. This interpreter can be used to execute all or just selected parts of a
model. Bruce Nelson wrote the interpreter, and Richard E. Pattis added a general information
structure parser for input operations.

86 The Output: Program Modelling Language

The information structures were also influenced by those of predecessor set oriented languages

such as SETL [Kennedy & Schwartz-75, Schwartz-75, Schonberg et al.-79] and VERS2 (Earley-

73A, Earley-73B, Earley-741. Sets and mappings are examples of information structures that

meet our requirements.

Below is a list of all of the types of information structures (abstract information units, or AIUs),
control structures (abstract control units, or ACUs), and primitive operations (POPs), classified
by how they obtain their effects. The primitive and collection AIUs have a number of
subtypes, which are also listed. A primitive operation may either return a value (which may be
used in an expression where the operation was called) or operate by side effect (in which case it

modifies one or more of its arguments). A small number of special primitive operations gain
effect by such side effects as enumerating elements in a collection, doing input/output, changing
the flow of control, or remembering the value of another operation in an instance for later use.
All five AIUs, all six ACUs, and sixteen of 51 POPs have been implemented. These are
designated by asterisks following their names.

Ww

87

Constructs of the Program Modelling Language

Abstract Information Units (AIUs) Abstract Control Units (ACUs)
primitive:' (string, Boolean, integer) composite: ("compound")
collectiont.' (set, multiset, ordered set, list) test:.- ("conditional")
correspondence: ("mapping", "function") case:'.
plex': ("record") loop!.,
alternative:', ("union") procedure*

program -model:-,

Primitive Operations (POPs) Primitive Operations
with Boolean Values with Non-Boolean Values

not remembered-v alue,:'
or new-primitive
and new-collection
is-empty convert
is-element* element-of
precedes subset
is-subsete., union

true-for-some intersection
true-for-al: difference
has-orrespondent:' n ew-or respond ence
correspond correspondent-oft.,
is-.component domain-of
are-components-eq ual inverse-of
is-of-typeo new-.plex
are-.equa':' component

Primitive Operations with Side Effects Primitive Operations That Enumerate
add-.element for-somedo
add-elements for-alldo
remove-element
remove-elements
replace-element
transfer-.element
transfer-elements
establish -correspondence
remove-correspondence
c h an gecor respond ence
replace-component
select-altern ativee*

1/0 Primitive Operations Control Flow Primitive Operations
input* assert -exi i-cond itionN
output:., procedu re-instanceN
inform-user:' return

Value Labelling Primitive Operation
remember*

88 The Output: Program Modelling Language

7.1 Information Structures

The information structures of the modelling language were designed to handle a variety of
simple symbolic computations. Information structure prototypes may be defined recursively to
build quite complex structures. Each structure may have associated with it a list defining one
or more legal values that the structure may take on. If there is exactly one such value, then the
structure is a constant. Each prototype information structure may have zero or more concrete
instances that are assigned values and manipulated by the primitive operations of the language.

A primitive requires no subordinate information structures to complete its definition. A
primitive may be of subtype string, Boolean, or integer, which determines the kind of atomic
value the primitive represents.

A collection is a group of semantically similar elements, where an element is an arbitrary
information structure (e.g., a primitive, another collection). A collection is categorized by
whether its elements are ordered and whether they may be repeated. The resulting four types
of collections are set, multiset (or "bag" [Rulifson et al.-72]), ordered set, and list (or "ordered
multiset"), as determined by the table below.

Types of Collections

No Repetitions Repetitions
Unordered set multiset
Ordered ordered set list

It is advantageous to group these four related information structures into one basic entity, the
collection, with two binary subtype specifiers. Since the four subtypes have much in common.
the knowledge involving their definition and use (i.e., by primitive operations) can be factored
so as to be nonredundant.

An explicit information structure has its value explicitly stored somehow; an impicit one must
compute its value when needed. A correspondence is an explicit function consisting of
mappings from the elements of an implicit domain set to those of an implicit range set. A
correspondence may be thought of as a set of ordered pairs of domain and range elements.
The implicit domain is then the set of all first elements of ordered pairs, the implicit range the
set of all second elements. A particular domain value can occur in at most one ordered pair at
a time. This information structure has widespread applicability. For example, such common
structures as arrays, property lists, symbol tables, and simple databases may be expressed as

correspondences.
3

A plex is a group of semantically dissimilar elements, like the record structure found in many
high level languages such as PL/I, PASCAL, and INTERLISP. Each field of a plex has a
unique (within that plex) constant name and an associated value. The type of each value is
defined by another information structure in the model. A field of a plex can be referred to onlyby its name, and not by less meaningful indices, such as its position in a list.

An alternative is a group of information structure choices, similar to the union declaration of

3 It is desirable to extend the notion of correspondence by creating a new information structure
for expressing general, explicit relations, rather tha limiting them to only functional ones.

Information Structures 89

ALGOL68 (Van Wijngaarden et al.-69). The value of an instance of an alternative must be
of a type corresponding to the selection of exactly one of these information structures. This
allows a program to handle (e.g., read in) an information structure whose precise structure isn't
known at the time the program is specified.

7.1.1 Information Structures of the TF Program Model

As an illustration of most of the important aspects of the program modelling language, we will
present a fairly complex program model of a concept formation program called TF. TF (for
"Theory Formation") is a simplified version of Winston's concept formation program [Winston-
75]. The goal of TF is to form an internal model (in the form of a simple information
structure-not to be confused with a program model) of a concept that may be used to
discriminate between "scenes" that are and are not part of the concept. TF builds up its
internal model by repeatedly reading in a scene that may or may not be an instance of the
concept. TF determines whether each scene fits the current internal model of the concept and
verifies this guess with the user. The internal model is then updated based on whether or not
the guess was correct. The internal model consists of a set of relations, each marked as (or
mapped into) one of the labels, "necessary" and "possible". A scene fits the model if all of the
"necessary" relations are in the instance; "possible" relations are optional.

As an example of an internal model, one plausible model of the concept of a blocks world
arch" is the correspondence (set of mappings)

{cube(a) -+ necessary, cube(b) -* necessary, cube(c) -4 possible, pyramid(c) -4 possible,
supports(ac) -+ necessary, supports(b,c) -4 necessary, not_touching(a,b) -4 necessary)

This correspondence indicates that an arch must have three blocks. Two of them are cubes
that are not touching and that support the third block, which may be either a cube or a
pyramid.

The information structures of TF are given below. They are presented in a PASCAL-like
notation that is produced from the actual program model by the readable program model
generator4 . The program model itself is rather unreadable, being maintained internally in a
parsed form as a tree of templates, each of which is an association list. The procedural pait of
TF is shown in the next section.

4 This "prettyprinter", written by Thomas T. Pressburger, provides concise, understandable
versions of program models [Pressburger-78). Any or all of the parts of a partial model may be
printed, and cross-reference tables are available to index the line numbers of the concise listing
and the template names of the original model.

7AD-A0BA 504 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/6 9/2
BUILDING PROGRAM MODELS INCREMENTALLY FROM INFORMAL DESCRIPTION--ETC(U)
OCT 79 B P MCCUNE MA903-76C-0206

IUNCLASSIFIED 57SANCS79772 NL

flf***l**fl*
EohmhEmhEEEEEE

90 The Output: Program Modelling Language

Information Structures of the TF Program Model

type
input-data-prototype: alternative of {scene. prototype, string - "quit"),
scene-prototype: set 3 5 size] of relation prototype,
concept-prototype: correspondence l ! degree) of

relation -prototype to string - ("necessary", "possible"},

relation -prototype: plex (size - 2) of
<relation-name: string, arguments: list [0 _5 size) of string>,

user-response-prototype: alternative of {string - 'correct", string - "wrong");

var
input-data: in put-data prototype,
scene: scene-prototype,
concept: concept -prototype,
relation: relation -prototype,
user-response: user responseprototype,
necessary, possible: string - (*necessary", "possible"},
fit-result: Boolean

An information structure definition in a program model creates a new prototype of the abstract
information unit (AIU), of which there may be any number of actual instances with various
values during the execution of the model. In the example above, the AIU prototypes are
defined after the reserved word type, and the AIU instances after the word var. For
conciseness, the definitions of simple prototypes are expanded where the prototypes are
referenced instead of giving them names to be referenced elsewhere.

We see that input-dataprototype is either a scene- prototype or the string constant "quit".
Scene-prototype is a collection of at least three unordered, unrepeated elements called
relation-prototypes. Concept-prototype is a many-to-one mapping from an implicit set of
relation- prototypes to the implicit set containing the strings "necessary" and "possible".
Relation-prototype is a plex with two fields, a string relation name and a list of string
arguments. User-response-prototype is either of the string constants "correct" or "wrong".

Most of the AIUs have only one instance. The AU that is a string with two possible values,
"necessary" and "possible", has two instances, unimaginatively called necessary and possible.
Fit-result is an instance of a Boolean primitive.

In order to exemplify the detail contained in an information structure, listed below is the
detailed AIU prototype for the correspondence concept-prototype, along with its sole instance,
concept. They are presented as two templates, each consisting of a list of slot/value pairs. Note
that the domain and range elements of the correspondence are names of templates defining
these AIUs (not shown here). The where entries of concept provide a cross-reference to each
template in the model where concept is used (i.e., created, destroyed, read accessed, or changed).
These templates are not shown. Also notice that assertions about the sizes of the implicit
domain and range sets are maintained.

Information Structures 91

Details of Two Information Structure Templates

name: concept-prototype name: concept
class: AIU class: AIU-instance
type: correspondence instance-of: concept- prototype
super-AIUs: none w here-reinembered:
instances: initialize-concept[

concept where- forgotten: none
domainAIU: relation prototype where-referenced:
domain-size: fitl 1 l

minimum: 0 updae 2,1,1 ,1
maximum: unknown update2 ,2 1

mean: unknown update4,1,1
variance: unknown update43, 1

rangeAIU: label-prototype update7,1, 1

range-size: update7 ,3,1
minimum: 0 where- modified:
maximum: 2 update2,2
mean: unknown update4,3
variance: unknown update7,3

many-to-one* true

7.2 Control Structures

The control structures of the program modelling language are generalizations of types common
to block-structured languages such as ALGOL.

A composite, or compound statement, is a set of operations to be performed, with a partial
ordering on their execution. The two extremes, no orderings and fully ordered, provide the
useful special cases of fully parallel and fully sequential execution. The default is fully
sequential.

A test is just like an if-then-else biconditional in ALGOL. A case is a multiway conditional
whose conditions are independent and unordered, with exactly one of them true. One of the
cases may use a default condition that is true whenever none of the others is [Barth-74].

A loop is a generalized loop structure that (I) has an explicit initialization part in addition to
the body of the loop and (2) allows exiting on any number of exit conditions, with special exit

actions associated with each condition [Zahn-74, Knuth-74]. Standard for, while, and until
loops all fall within this framework.

A procedure may return a value or not and may have parameters or not. All parameters are
considered to be called by reference.

J.

92 The Output: Program Modelling Language

7.2.1 Procedural Part of the TF Program Model

To help clarify the procedural notions in a program model, below is a PASCAL-like version s

of the abstract control units (ACUs) and primitive operations (POPs) of the TF program
introduced in the previous section. This example represents about half of the program model.
All information structure definitions are given in the preceding section; cross-references and
most other annotations have been omitted.

Procedural Part of the TF Program Model

until exit
first

parbegin
necessary 4- "necessary";
possible 4- "possible";
concept 4- concept.prototype{}

parend
repeat

begin
input-data 4- input(inputdata-prototype, user, "Ready");
if input-data - "quit" then assert-exit-condition(exit);
scene +- input-data;

fit-result +- (concept' (necessary] g scene)[p - 0.5];
if fit-result then inform user("Fit") else inform-user("Didn't fit");
user-response +- input(user-response- prototype, user, "Is this correct or wrong?");
case

fit-result A user-response - "correct":
V relation e scene I relation q domain(concept)
do conceptfrelation] -. possible;

fit-result A user-response - "wrong":
3 relation e concept' (possible] I relation i scene
do concept[relation] + necessary;

-fit-result A user-response - "correct":
-fit-result A user-response - "wrong":

V relation e concept-'[necessary] I relation q scene
do concept[relation].* possible

endcase
end

finally
exit:

endloop

The main body of the model is a loop, shown delimited by the reserved words until and
endloop. The three parts of the loop, the initialization, body, and exit blocks, follow the
reserved words first, repeat, and finally, respectively. There is one exit block, called "exit",
which is empty. The initialization consists of a fully parallel composite that initializes the two
instances of string primitives, necessary and possible, to the values "necessary" and "possible"

and initializes the concept instance of the correspondence called concept prototype to have no
mappings.

s produced by the readable program model generator

Control Structures 93

The body of the loop is a fully sequential composite that first inputs from the user an instance
of the input-data-prototype alternative and stores it m input-data. Input-data may either be
an instance of the set scene-prototype or the string "quit". If it is "quit", then the body of the
loop is left via an assert-exit -condition operation and the exit block called "exit" is executed. If
it isn't "quit", then input-data must be an instance of scene prototype. In this case, the
select-alternative operation is used to rename input-data as scene, a particular instance of
scene-prototype. From this point on, input-data is no longer defined.

The fourth statement of the composite tests whether scene fits the current concept and stores the
result of the test in the Boolean primitive fit-result. The test checks whether the set of all
elements in the domain of the correspondence concept that map into the string necessary is a
subset of scene. This computation uses the inverse-of operation on a correspondence and a
particular range element. The is-subset operation is annotated to show that the probability
that it is true is 0.5.

The next two statements print out the result of the test and then input the user's agreement or
disagreement with that result, in the form of one of the strings "correct" or "wrong". This
string is stored in the instance user-response of the prototype user-response prototype, which is
an alternative of the two possible strings.

The final statement in the loop body is a case with four possibilities for updating concept based
upon the cross-product of the two possible values of fit-result and the two for user-response.
The first case puts every relation in scene that isn't already in concept into concept, with a
mapping into possible. The second case chooses a relation that is marked possible in concept
and is not in scene, if one exists, and changes its marking to necessary. The third case doesn't
have any action. The fourth case is similar to the second, but changes each relation marked
necessary in concept and not a member of scene so that it is marked possible instead.

Below are the details of one control structure template, the main loop of TF. Note that this
template points to the control structures both above and below it in the program model tree.
The root template, TF, is directly above it, and initialize and input and-process-body are the
templates directly below it, which define the subparts of the loop. The relevant AIU instances
listed are those that are only used locally to this subcree of the total control structure of the
model.

Details of a Control Structure Template

name: input-and-process
class: ACU
type: loop
super-ACU: TF
relevantAIU-instances:

necessary
possible
concept

initialization: initialize
body: input-and-process-body
exit-pairs:

<exit, nil>

94 The Output: Program Modelling Language

7.3 Primitive Operations

There are approximately fifty primitive operations', including some of a fairly high level. A
number of these were presented in the program model example of the preceding section. r
There are operations for creating, accessing, changing, and combining the components of
information structures in various ways; making standard Boolean tests; doing input and output;
and calling and returning from procedures. For example, the standard set operations union.
intersection, and difference are defined on collections.

Here are some examples of higher level operations. Inverse-of takes the inverse of a
correspondence under a particular range element, i.e., inverse-of returns a subset of the domain
of the correspondence consisting of each element that maps into the chosen range element.
Subset returns all elements of a collection that satisfy a given predicate. True-for-ait and
true-for-some allow a collection to be examined to see if a condition holds over all or at least
one of its elements. Examples of the universal and existential enumeration operations,
for-aIlldo and for-some-do, were presented in the preceding section within the case statement
of TF.

7.4 Assertions

Certain metalevel information in the form of assertions may be attached to program model
templates. Assertions are not required for a complete model, e.g., the model can be interpreted
without the existence of any assertions. However, assertions can provide valuable information
to PMB, other acquisition experts, or a later coding phase. Currently assertions may only state
user assumptions or estimates (e.g., of collection sizes or probabilities of conditions being true
in control structures or primitive operations). It would be trivial to add a definitional type of
assertion that acts as a command to PMB or later coding stages, e.g., "This information
structure should be implemented as a linked list.". Assertions are represented by special slots in
templates, one slot name per assertion type. These slots are handled like other slots.

6 A complete list was given at the beginning of this chapter.

95

Chapter 8. The Knowledge Base: Rules for Building Program Models

There are two aspects of rules: form and function. First we define the format and types of
rules in PMB's knowledge base. Then types and examples of specific knowledge about
programming are presented. These include facts about Incremental construction of program
models, completeness, semantic consistency, and canonization. English paraphrases of many
more PMB rules are given in Appendix B.

8.1 Format and Types of Rules

PMB's expertise is implemented as a set of procedural rules that are scheduled by the rule
interpreter discussed in Chapter 6. All rules (i.e., both response and demon rules) use a
standard antecedent/consequent format:

4 1 A 42 A ... A n - C

Each antecedent (or precondition) a, is either a simple Boolean test on the state of the current
fragment or program model or an explicit call to a Boolean function. The consequent c is a
sequence of actions that access the current fragment and partial program model, modify the
model, ask questions, call other rules (perhaps creating demons), and return a Boolean value.
Each antecedent is evaluated in order. If one is false in a response rule, then the rule fails. If
one is false in a demon, then the demon blocks at that point, awaiting a later change that might
make the antecedent true. Only when all of the antecedents are true is the consequent executed.
A rule achieves success only if all of its antecedents and its consequent are true.

Being procedural, the rules run compiled and hence very efficiently. However, it is difficult to
add, modify, or generalize rules in this form. So a high level *rule expander" has been written
that generates procedural demon rules from a declarative antecedent pattern. On the average,
one of these compound demon rules translates into about five simple rules.

The rest of this section discusses the two types of rules, simple and compound. The current
rule base of PMB consists of approximately 200 simple rules and twenty compound demons.
Perhaps twenty of the simple rules are demons that were written by hand before the existence
of the rule expander. If rewritten, these would result In four or five new compound demons.

8.1.1 Response Rules

PMB knows many facts about program models in order to be capable of building them and
guaranteeing that they are complete and consistent. PMB knows all of the types of control
structures, Information structures, and primitive operations in the modelling language; the
properties of each construct; the legal values of each property; which properties are required
and which are optional; and default values for properties. Other knowledge takes the form of
checks or transformations on one or more properties.

Most of this knowledge is organized Into response rules according to the program model
construct Involved. The following table contains paraphrases of what PMB knows about an
example control structure and an example information structure.

- - S

96 The Knowledge Base: Rules for Building Program Models

Examples of Knowledge of Legal Program Models

A loop consists of an optional initialization, required body, and required pairs of
exit tests and exit blocks. Each exit test must be a Boolean expression occurring
within the body.

A collection may be ordered or not, may allow repetitions or not, may have a size
estimate, must define the prototypic element, and may have instances. The default
I/O format is a LISP list of elements.

The nature of response rules will be covered in more detail by discussing one representative
response rule. This rule handles the acquisition of an isisubset primitive operation. To
provide context for the discussion, the completed is-subset template from the CLASSIFY
program model is shown below. This template represents an operation that tests whether the
collection fit-concept is a subset of the collection fit-scene.

Completed Is-Subset Template

name: proceduretbody
class: primitive operation
type- is-subset
super-ACU: fit
type-returned: Boolean
subcollection: fit-concept
collection: fit-scene

Processing of the name and ruper-ACU slots is trivial and isn't shown. Although processing of
the type-returned slot for a Boolean condition is also trivial, the general case is discussed in
the next section.

The rule is designed to be invoked whenever an is-subset is a legal type for a new template, i.e.,
whenever a Boolean value is permitted. For this to happen, the name of this rule is included
in the list of response rules associated with any question that asks for a Boolean expression.
For example, when the subgoal for the condition part of a test is created, a question asks for a
Boolean expression. The name of the function that is the rule below will be a member of the
list of response rules stored along with this question. In terms of the slot values below, the
issubset operation takes the form SUBCOLLECTION c COLLECTION. TEMPLATE is
the name of the new template being defined by the latest fragment.

Format and Types of Rules 97

Response Rule for Handling Is-Subset Operation

If the TYPE of the new template is IS-SUBSET, then
(1) store POP (primitive operation) as the CLASS of TEMPLATE;
(2) store IS-SUBSET as the TYPE of TEMPLATE;
(3) add TEMPLATE to the list of all IS-SUBSETs in the program model;
(4) ask the external environment what the SUBCOLLECTION slot of TEMPLATE is,

storing the question away along with appropriate response rules to handle
the answer, which is required;

(5) ask what the required COLLECTION is similarly;
(6) guarantee that the two types of collections returned by SUBCOLLECTION and

COLLECTION have the same prototypic element;
(7) assume that there will be no PROBABILITY given;
(8) ask what the optional PROBABILITY is that the IS-SUBSET returns a value

of true; and
(9) return success.

Note that Steps 1, 2, and 7 store values into slots in the template and thus may trigger demons
that Are waiting for those slots to be filled in. Step 3 generates a global cross-reference to this
template by its type. Steps 4, 5, and 8 generate subgoals. Step 6 sets up a compound demon
that is discussed in the following section. Step 8 asks an optional question (i.e., one not
required to be answered) because Step 7 has already assumed a default answer.

Steps 4 and 5 create questions that are equivalent except for the slot name involved
(SUBCOLLECTION versus COLLECTION). Each of these questions has five response rules
(discussed individually below) to handle the various possible states of the program model when
a template name is provided in answer to the question. These states arise because templates
and parts of templates may or may not exist at any particular time in the midst of model
building, since program fragments may arrive in any sequence. Note that exactly one of the
response rules succeeds.

I.I

98 The Knowledge Base: Rules for Building Program Models

Response Rules for Hanidling Arguments of IsSubset

(1) If the template doesn't exist, create one and give it a class of "collection". This
is a pseudo-class that serves as a constraint on the class and type allowed for this
template.1 Other rules notice this pseudo-class and restrict the template to be either
an instance of a collection information structure or a primitive operation that
returns an instance of a collection as its value.2

(2) If the template has pseudo-class "collection", then don't do anything. It is
already guaranteed to return an instance of a collection.

(3) If the template is an information structure instance, then set up a demon to
guarantee that it is eventually defined to be an instance of a collection.

(4) If the template is a primitive operation, then set up a demon to guarantee that
it is eventually defined as returning an instance of a collection.

(5) If the template exists but isn't of one of the types discussed above, then there is
an error because the template can't possibly return an instance of a collection.

8.1.2 Simple Demons

Simple demons are used whenever an operation may have to wait for a single slot to be filled
in.3 There are few simple demons.

As an example, all templates that return a value have a TYPE-RETURNED slot. The value
of this slot is determined from the values of other slots in the template in various ways. An
input operation has an AIU slot defining the information structure that is input, which is the
type returned by the input. When the input template is created, a simple demon is set up that
waits for the AIU slot of the template to be filled in and then copies its value into the TYPE-
RETURNED slot of the same template.

In many cases, the TYPE-RETURNED slot of a template will simply be the same as the
TYPE-RETURNED slot of a second template pointed to by the first. For example, the TYPE-
RETURNED by a procedure.initance (or call) will be whatever the TYPE-RETURNED of the
procedure itself is. In such cases, a simple demon is set up that will copy the value from one
template to the other when it becomes defined in the former.

Looked at from the point of view that a number of possible template types are still allowed by
the pseudo-class, it can be considered a form of implicit OR.

2 The use of a pseudo-class makes the constraint more explicit than simply using consistency
demons to check the template's class and type after the fact. This explicitness is important in
defining the type of a template. However, this means that every rule that might do something
with that template must be aware of the possible constraint.

3 When more than one slot may be missing, a compound demon is used.

L: ;

Format and Types of Rules 99

8.1.3 Compound Demons and the Rule Expander

A compound demon is used whenever the antecedents of a rule may have to wait for more than
one slot to be filled in before being evaluated. The consequent or action part of a compound
demon is procedural, as in all rules. The antecedents are written in a concise, declarative
language that can express any pattern of program model templates and slots to be matched.
Slot values may be bound and compared using a small number of predicates. Then the rule
expander (or compiler) 4 translates the declarative form into a linear cascade of simple demons,
each of which waits for one new slot value to become available, tests all antecedents that can
now be tested at that point, and then sets up the next simple demon in the order.

The rule expander takes into account ordering constraints on the antecedents and makes sure
that the rule consequent is executed as soon as all antecedents are satisfied. A partial ordering
of the antecedents is determined, based upon the constraint that no antecedent can be evaluated
until all of the variables that it references have been bound, often by another antecedent. From
this partial ordering, one complete ordering of antecedents is chosen. By writing a compound
demon and using the rule expander, rather than writing a sequence of simple demons by hand,
the number of rules required has been reduced by factors from two to seventeen. When this
expansion ratio is large, say, five or greater, the ease of writing and modifying the single
compound demon becomes an important factor in maintaining and expanding the knowledge
base.

Input to the rule expander is in the form of one logical PMB rule:

al A a2 A...A a. -+C

Output takes the form of a compound demon implemented as n ordered simple demons (LISP
functions). The order in which the antecedents are evaluated is denoted by the permutation
function p below.

Format of Compound Demons

d1: a(,) -+ d2

d2: ap(2) -* d3

d,: 4 p(n) C

As an example, one might want to transform into tests all case statements that have exactly two
mutually exclusive conditions. Such a rule might be expressed as shown below.

4 Written by Steve T. Tappel

100 The Knowledge Base: Rules for Building Program Models

Example Compound Demon

if (1) the statement is a case,
(2) the case has two condition/action pairs, and
(3) the first condition is the negation of the second condition,

then
change the case into a test.

As discussed in Chapter 6, there are two types of demons, consistency and transformation. The
distinction is that transformation demons make structural changes to the program model (i.e.,
they add or remove entire templates), whereas consistency demons do not (i.e., they only access
or store into existing slots). Examples of a compound demon of each type follow.

Example Consistency Compound Demon

This consistency demon is set up by the response rule for handling is-subset operations, which
was discussed in the previous section on "Response Rules". The actual demon from PMB's rule
base is listed below. The context of the demon is that IS-SUBSET is an is5subset primitive
operation, a predicate of the form SUBCOLLEC 1 ON c COLLECTION. An English
paraphrase of the rule is

Require that the SUBCOLLECTION and COLLECTION expressions, which are
the two arguments of the is-subset operation called IS-SUBSET, both return
collections of the same prototypic element.

Compound Demon for Checking Consistency of Is-Subset

(NAME I S-SUBSET-CONSISTENCY)
(TYPE CONSISTENCY)
(VARS IS-SUBSET)
(PATTERN (IS-SUBSET (SUBCOLLECTION = SUBCOLLECTION)

(COLLECTION = COLLECTION))
(SUBCOLLECT ION (TYPE-RETURNEO - COLLECTION-i))
(COLLECTION (TYPE-RETURNED - COLLECTION-2))
(COLLECTION-I (CLASS = 'AIU)

(TYPE - 'COLLECTION)
(AIU-FOR-ELEMENTS - AIU-FOR-ELEMENTS-i))

(COLLECTION-2 (CLASS = 'AIU)
(TYPE = 'COLLECTION)
(AIU-FOR-ELEMENTS - AIU-FOR-ELEMENTS-2))

(REQUIRE (AIU-FOR-ELEMENTS-1 - AIU-FOR-ELEMENTS-2))
(ELSEACTION (HELP IS-SUBSET

"SUBCOLLECTION and COLLECTION have different prototypic elements."))

The rule expander translates this compound demon into twelve LISP functions that will be
executed in order. The first function is given the name IS-SUBSET-CONSISTENCY and is
the rule invoked with the name of the is-subset template of interest as a parameter in order to
initialize the compound demon. When the first function is called, this template name is bound
to the variable IS-SUBSET, which is declared in the VARS section of the listing above. The

Format and Types of Rules 101

first function is not a demon itself, but sets up the first simple demon. The next ten functions
are simple demons that await the ten slot values referenced in the PATTERN section above.
Finally, the twelfth and final function is created for the ELSEACTION.

The heart of a compound demon is its PATTERN part. A pattern defines relations on one or
more slot values of one or more templates. For each template specified, there may be any
number of slot triples, each consisting of a slot name, relation, and value. The slot name is
implicitly quoted. The relation may be equality, set membership, and their negations. The
value of a slot triple may be either a constant (which is explicitly quoted) or a variable (which
is not quoted). The first time a variable is encountered-at runtime, not compile time-it is
bound to the value of the slot.5 After this occurrence, the relation will be tested to see if it
holds, when the slot finally has a value. If the relation holds, the compound demon proceeds to
the next test, which often means setting up the next simple demon. If the relation doesn't hold,
then the ELSEACTION is executed.

A REQUIRE section takes an arbitrary LISP expression to be evaluated as soon as all of its
external variables have bindings. This expression must be true; otherwise, the compound rule's
ELSEACTION is executed.

The optional ACTION and ELSEACTION parts contain arbitrary LISP code. The
ELSEACTION is executed if the PATTERN isn't matched successfully or if a REQUIRE
statement is false. Otherwise, the ACTION is executed. The demon above doesn't need an
ACTION because it is only making a consistency check.

Example Transformation Compound Demon

This transformation demon is set up by the response rule for handling output operations.
Again, the actual demon is listed below. The context of the transformation demon is that
OUTPUT is an output primitive operation that outputs AIU-INSTANCE to
DESTINATION. An English paraphrase of the rule is

If the output operation called OUTPUT is merely outputting a string constant to
the user, then transform OUTPUT into an inform-user operation.

6 The relation in this first occurrence must be equality.6.l

i -- -

102 The Knowledge Base: Rules for Building Program Models

Compound Demon for Transforming Output to InformUsei'

(NAME OUTPUT-TO-INFORM-USER)
(TYPE TRANSFORM)
(VARS OUTPUT)
(PATTERN (OUTPUT (SUPER-OU - SUPER-OU)

(DESTINATION - 'USER)
(AIU-INSTANCE = REMEMBERED-VALUE))

(REMEMBERED-VALUE (TYPE - 'REMEMBERED-VALUE)
(TYPE-RETURNED = STRING))

(STRING (TYPE = 'PRIMITIVE)
(SPECIFIER - 'STRINGJ
(VALUE ~, NIL)))

(ACT I ON (DELETE-AM-TEMPLATE OUTPUT)
(SET-AM-TEMPLATE OUTPUT (create INFORM-USER-TEMPLATE SUPER-OU.-SUPER-OU

MESSAGE4-(GET-AM-SLOT STRING 'VALUE)))
(ADO-TEMPLATE-REFERENCE AM-NAME 'POP 'INFORM-USER OUTPUT)
(DELETE-FROM-AM-SLOT (GET-AM-SLOT REMEMBERED-VALUE 'AIU-INSTANCEJ

'WHERE-REFERENCED REMEMBEREO-VALUE)
(DELETE-AM-TEMPLATE REMEMBERED-VALUE))

Here we see that ACTION is a list of LISP expressions to be evaluated. Usually they are
restricted to a small set of primitives that manipulate the program model. This particular
ACTION deletes two old templates and creates a new one to replace them.

8.2 Incremental Building

Siice the specification process doesn't constrain the order in which topics are covered, PMB is
capable of dealing with fragments received in virtually any order. There are twc mechanisms
for dealing with this problem: (1) demons and (2) response rules that respond appropriately
whether or not a template that is referenced already exists. Examples of these were given
earlier in this chapter.

8.3 Completeness

One major goal of PMB is to produce a complete program model. This means that every
required piece of information about a construct that has been put in the model must be
determined eventually. There are several ways to achieve completeness: by default, inference,
and questioning, Cross-referencing is a required part of each model template and is done by
PIB.

Corn pleteness 103

8.3.1 Default

The simplest way information can be determined is by default. If some detail is omitted from a
fragment, PMB fills in a default value if one is known. For example, the format for inputting
a collection will default to a LISP list. Size information about a collection is optional, hence
the default is none.

A slot default is stored as soon as a template is created. But a question about that slot is still
asked. Thus, if the question does get answered, the default value is overridden. If the question
doesn't get answered, then the default value remains in force. Such a question is explicitly
marked as an optional question in the list of outstanding questions. Optional questions need
not be answered for model completeness. The user cannot override a previously stored slot
value that isn't a default because no outstanding question will remain for that slot.

8.3.2 Inference: Type Coercion

The second way slots may be completed is by inference. The best example of completion by
inference is the coercion of the types of information structures [Reynolds-69]. If the type of a
formal parameter of a procedure isn't known, it will be inferred from the type of the
corresponding actual parameter in a procedure-instance, and vice versa. The type of a referent
(quantified variable) in a true-for-some, true-for-.all,for-some-do, orfor-all-do may be coerced
by the way in which it is referenced in the body of the operation. In an is-subset operation if
the names of both set arguments are known and the prototype of one of these instances is
known, then the prototype of the other is inferred to be the same.

There is an interesting analogy between the propagation of data type constraints through a
model (smart type coercion) and the propagation of constraints in an electronic circuit (Stallman
& Sussman-77J. In the former case, a step in the propagation is based on what operations two
data types enter into together. In the latter, it is derived from equations defining the
relationships (e.g., voltages, current flow) between neighboring points in a circuit.

8.3.3 Questioning

The final-and usually the most frequent-way to attain completeness is to ask the external
environment for more information. For example, when a loop is added to the model, PMB
requests its exit conditions. When a collection is created, its prototypic element is immediately
requested.

8.3.4 Cross-References

As a model is being built, cross-references are added. One type of cross-reference keeps track of
the current scope of each information structure instance, i.e., the control structure that contains
all references to the instance, but contains no other control structure that also contains all such
references. Scope information is useful for variable allocation during coding.

Each instance also contains a list of each primitive operation that creates, destroys, references,
or modifies it. This information is required for some consistency checks and transformations.

104 The Knowledge Base: Rules for Building Program Models

Global lists of all objects are maintained by class (e.g., control structure, information structure.
and primitive operation) and type (e.g., loop, collection, and add-element). This allows all
constructs of one type to be found quickly.

8.4 Semantic Consistency

After completeness, the next major goal of PMB is to guarantee the consistency of the model
produced, i.e., that everything done in the model is legal with the respect to the semantics of the
program modelling language and permissible with respect to the rest of the current model.
This sort of consistency checking is one level smarter than the simple syntactic checks that are
done by incremental compilers and some editors. Obviously this is only a step in the right
direction. There are many possible tests that might be considered within the scope of
"consistency", but most (e.g., formal program verification) require much more information from
the user about the intent of the program. These are not covered here.

8.4.1 Consistency Checking

PMB does standard type checking and will complain, for example, if a number is given as the
value of a string primitive. Similarly, an is-element operation, e.g., x e S, requires that x be of
the same type as the prototypic element of the collection S.

8.4.2 Inconsistency Resolution

There are situations in which inconsistencies are corrected by P1B. One example is the
sorting out of prototype/instance ambiguities. The modelling language distinguishes between
the prototype of an information structure and the one or more actual instances of it that are
manipulated by the algorithm. For one of these instances (the "primary instance"), PMB allows
fragments to skip defining the instance and make all data references directly to the prototype
instead. This prototype/instance ambiguity is also called a type/token mixup.

In the diagram shown below, two separable problems arise. In the first, fragments have defined,
first, the prototype of an alternative and, second, a procedure-instance that uses the prototype as
an actual parameter. Unfortunately prototypes aren't allowed as procedure-instance arguments.
Since no instances of the alternative prototype exist, PMB creates one and changes the
procedure-instance to use this new instance as its argument. This instance is marked as the
primary instance in the information structure prototype so that, even if other instances are
defined in the interim, future prototype references that should be references to an instance will
be translated into the primary one. Two way cross-references are filled in also, as denoted by
the additional arrowheads,

If a primary instance of the alternative had already existed, it would have been used. If no
primary instance but exactly one regular instance had existed, PMB would have marked it as
the primary instance instead of creating a new one. If more than one regular instance had
existed, none marked primary, then PMB would have given up, since there are no heuristics at
present to attempt a disambiguation.

Semantic Consistency 105

The second problem occurs in defining the alternative information structures (or sub-AlUs) of
an alternative. In this case, one of them is defined as a collection instance (see diagram below).
In the modelling language, information structure prototypes may be recursively defined only in
terms of other information structure prototypes, not particular instances of them. In this case
the collection prototype is known, so PMB changes the alternative prototype to point to it
instead of the collection instance. If the prototype weren't known, then the instance would
have been copied to another template, the prototype created in its place, and the instance
marked as primary.

Resolution of Prototype/Instance Ambiguity

Program Fragments

alter- binding procedure
native instance

p rototype

sub-AIU

collec- instance_.of collec-
tion tion

prototype instance

Program Model

alter- instance-.of alter- binding procedure
native native - instance

prototype instance

sub-A IU

collec- instance-of collec-
tion - tion

prototype instance

106 The Knowledge Base: Rules for Building Program Models

8.4.3 Specialization of Generic Operators

Similar to inference based on consistency is the specialization of generic operators. A generic
operator is one that has several different but closely related semantics, depending upon the types
of its arguments.6 This problem can be thought of as the inverse of type coercion on variables.
Instead of coercing operands according to what operators they are arguments of, the operator is
coerced (specialized) based on the types of its arguments.

The fragment operation are-equal may result in one of the following primitive operations:
is-empty (is a collection empty), are-equal (are two instances of the same prototype equal in
value), are-components-equal (are two components of two instances of the same plex prototype
equal), and is-ofttype (is an alteTnative instance of a particular type).

The fragment operation part-of may be translated into one of the primitive operations
is-element, is-subset, has-correspondent (does a domain element map into anything), or
is-component (of a plex), depending upon its arguments and how they are represented in the
program model:

part-of(x,Y) 4 x e Y
XcY

. Y[x] defined?
- is-component(xY)

8.5 Canonization

PMB also has knowledge of program model equivalence transformations. This knowledge
allows PMB to modify the normal results of model building in order to map constructs into
higher level, more concise forms. The intent is to map equivalent expressions into one
canonical form whenever they can be detected. The higher the level of an expression, the more
implementation alternatives are afforded the coding process.

We term this type of model transformation canonization because equivalent constructs are
transformed into the same canonical form. Other words don't convey quite the right meaning.
"Abstraction" connotes a loss of detail. "Generalization" also connotes a loss of detail, e.g., as in
learning programs and unification algorithms. "Simplification" connotes the small, localized,
syntactic transformations, often contained in the simplifier module of a program verifier, that
always result in a simpler (according to some metric) expression. Loveman has coined the term
"evolution" to denote transformations that discover higher level constructs in lower level code
(Loveman-77.

Below are the input and output from one transformation. 7

6 Since its semantics may take various forms, another name for this kind of operator is
"polymorphic".

7 Some other examples are discussed in [McCune.77].

Canonization 107

(V relation) relation e concept relation e input-scene

concept c input-scene

VERS2 [Earley-73A. Earley-73B, Earley-74] proposed similar transformations to convert
element mapping operations into set operations, but the language was never implemented.

There are three possible ways to perform such transformations: (I) Immediately force the user
to provide any additional information needed to proceed; (2) assume the information that is
required if there is no evidence to the contrary (this may require inverse transformations or
backing up later if the assumption proves unfounded); or (3) wait until all information is
known and the transformation is permissible. PMB uses approach (3). Doing a transformation
earlier wasn't felt critical enough to burden the user with answering additional questions
immediately. And making assumptions is too dangerous to do without a model of when they
are reasonable.

Canonization uses transformation demons to catch the obvious (and hopefully most useful)
equivalences. A matching process occurs during the building of the model, looking for
appropriate occasions in which to apply these transformations. A scheme to recognize a wider
class of equivalences would need a theorem prover (Barstow-79B). Canonization is done by
attaching demons to a te:mplate whenever it may be possible to canonize it, e.g., to the
true-for-all template (represented by Y) in the example above. Attachment to a model template
is done after any informalities have been removed (i.e., the template is a legal construct in the
modelling language). This avoids having canonization rules that can also handle informalities.

I

109

Chapter 9. Conclusion

The thesis concludes with a description of the types of program models that have been
successfully built by the Program Model Builder (PMB), a listing of the scientific contributions
made by the research, and a discussion of limitations of the work and the directions for future
research that these limitations suggest.

9.1 Program Models Built

PMB has built very high level program models for various versions of the algorithms
described below. Most models were built during runs of the entire PSI program synthesis
system. The table lookup model was constructed by PMB running separately.

An identity algorithm inputs and then outputs a single information structure (e.g., a set of
record structures). Program models for this algorithm class make use of most of the
information structure types in the program modelling language. The exception is the
alternative, or union, structure. In addition, simple inferences about input/output operations
are performed.

A membership algorithm first inputs a set of elements. Then the algorithm loops, inputting an
element and testing whether it is in the set. This algorithm might be used to determine who
should be admitted to a restricted place (e.g., a bank vault or a posh discotheque), based upon a
set of names of authorized people. Models for this algorithm class use all of the control
Structures in the modelling language, plus the alternative information structure. Most of the
expertise exhibited in the example of Chapter 4 is required for this class of models.

A subsetting algorithm inputs a set and then loops, inputting another set and testing whether
the first is a subset of the second. This algorithm might be used to determine whether a set of
job requirements is met by the set of qualifications of any job applicant. Program models for
this class of algorithms are comparable in complexity to models for membership. However, in
some cases there are more opportunities to transform expressions into canonical form. One
model for subsetting contains 52 program constructs (information structures, control structures,
and primitive operations).

A table lookup or search algorithm inputs a mapping (e.g., a set of ordered pairs of domain
and range elements). The program then loops, inputting a domain element and printing the
corresponding range element, if any. This algorithm could be used to look up recipes in a file
that is indexed by recipe names. Program models for this algorithm class utilize much of the
knowledge base about mappings and operations on them. One model for table lookup contains
54 modelling language constructs.

I

110 Conclusion

9.2 Contributions

We have presented a solution to one aspect of the program acquisition problem: the
incremental construction of program models from informal descriptions. Incremental implies
not only that information arrives a piece at a time, but that the pieces may arrive in an almost
arbitrary order. /nformal implies that even if all program pieces were put together, they might
still not form an algorithm. The solution to this problem is a framework for incremental
program acquisition that includes a language for expressing programs informally and
incrementally (the program fragment language), a control structure for recognizing fragments in
which new information arrives in an arbitrary order, and a knowledge base of rules for using
this new information to update the program under construction. A computer system, the
Program Model Builder, has been developed to test these aspects of the framework.

9.2.1 A Framework for Program Acquisition

Defining a framework for program acquisition is important. This is a new field, and not all of
its aspects discussed herein have been fully appreciated previously. The general framework for
program acquisition is described here briefly. Specifications are done at a very high level
(compared to typical high level programming languages) and allow informalities such as minor
incompleteness, inconsistencies, and ambiguities. These two features require the acquisition
system to do more of the work in arriving at an efficient program, but the user to do less. The
user must be in control of what is specified, how much is specified, and when it is specified.
Specification is decoupled as much as possible from implementation considerations such as
target language and target computer.

Our program acquisition framework assumes that transferring a program from human to
computer requires the use of one or more languages for program specification. In addition to
knowledge of these specification methods, any system of program acquisition requires knowledge
of the programming language in which the acquired program is to be represented and
knowledge of the domain of the program. It is possible to study, codify, and build systems that
use the programming knowledge and interface with the other kinds of knowledge necessary for
acquisition, yet not be constrained to work with any particular other kinds.

This thesis has explored one point in the space of this acquisition framework. A number of
new techniques have been tried. In particular, the notion of combining informal specification
with incremental specification is new. To allow this type of specification, a language for
representing program fragments was designed and implemented. Then a pattern language for
referring to parts of a program was designed when the need became evident. Supporting this
type of specification has required the invention of incremental semantic consistency checking.
Finally, the idea has been introduced of putting a program in canonical form to simplify
subsequent automatic coding.

9.2.2 Program Fragment Language

The program fragment language supports two important notions, incremental and informal
program specification. The informalities include incompleteness, inconsistency, and variety of
specification. The language appears to have succeeded in its goal of providing a method for
specifying the smallest amount of new information possible about a program. The fragment

..........

Contributions 111

language is also a start toward a representation of programming informality that is independent
of a particular specification technique. This notion isn't conclusively a success, however, since
the informalities have arisen mainly from observations of specifications using natural language
and, secondarily, execution traces.

The pattern matching primitives of the program reference language provide a simple, uniform
framework for accessing a piece of a program by a combination of textual, syntactic, contextual,
historical, semantic, and pragmatic indices. This language is the result of ideas borrowed from
systems such as text and program editors, combined with ideas derived from observations of
how people actually specify programs informally. Since the program reference language is only
in the early stages of incorporation into the program editor of the CHI program synthesis
system (Phillips-79], the successor to PSI, no results are known. However, the need is clear and
the idea seems promising.

9.2.3 Control Structure

PMB uses a problem solving technique that allows subgoals to be dealt with in an order
defined by the user, rather than the system. This recognition method may be applicable to
other problems that require a symbolic knowledge base to be acquired incrementally (e.g.,
speech understanding, image understanding, other signal processing domains, knowledge
acquisition domains). Although subgoaling without any well-planned default for ordering the
subgoals is not desirable, it is much closer to the ideal for recognition or knowledge acquisition
than an absolute ordering that is fixed by the program.

Having only one demon for one antecedent active at a time (linear demon activation) is an
efficient mechanism for those cases in which all antecedents must be true before any action is
taken. Use of this method results in only one location in the database being monitored at a
time. Evaluation time is linear in the number of conjuncts, even in the case in which some
conjuncts sometimes become false after having been true. Average time for the typical method,
in which all conjuncts are reevaluated whenever one may have changed, is quadratic in the
number of conjuncts.

Demon priorities are useful when one class of demons must (locally) succeed before another class
is allowed to awaken. The demon invocation mechanism was only implemented for two priority
classes, but a general scheme for an arbitrary number of classes would be straightforward and
useful.

9.2.4 Knowledge Base

PMB demonstrates the feasibility of having two forms of knowledge, a static base of rules
about program acquisition and a dynamic base of templates that constitute the program that is
being acquired. Except for the declarative antecedents used in compound demons, all rules are
procedural. However, for the most part the types of processing done are quite restricted. It
makes sense to extract the syntactic knowledge of the language in which program models are
written (the program modelling language). This knowledge would be represented declaratively.
The next step would be to develop a special language for doing incremental semantic
consistency checks, program transformations, etc. Any processing that didn't fit the first two
categories would be done by special purpose procedures.

112 Conclusion

The rule base has a fairly large array of rules about various programming constructs and
associated consistency checks.' Incrementally acquiring and checking pieces of a program seems
to work out well. A few rules for a number of different types of informalities have been
written. The emphasis was on breadth rather than depth. The result is not conclusive in this
area. Many more rules need to be tried before the problems will even be fully understood, let
alone solved.

The technique used by the rule expander for "compiling" compound demons allows complicated
antecedent patterns to be specified declaratively, yet executed efficiently as procedures. This
technique is simply an application of the tenets of program acquisition to the building of the

program acquisition system itself' Use of the rule expander has resulted in rules being written
much faster and with fewer errors than when they were written out individually by hand.

9.2.5 Implementation

The implementation of PMB has provided a testbed for experimenting with our approach to
the program acquisition problem. This experiment has been a qualified success. A number of
programs have been successfully acquired by PMB working as part of the PSI program
synthesis system. But a number of deficiencies have been observed in PMB's capabilities and
implementation. These are outlined in the next section.

9.3 Limitations and Future Work

The limitations given below point out the most obvious and important future work needed on
PMB and related research.

9.3.1 Role of Model Building in Other Systems

PMB assumes that program fragments come from other knowledge sources or possibly directly
from the user. But there is no mechanism for feedback or sharing of the knowledge in the
program model, except for PMB asking questions. Whether the best approach is a single
acquisition system with many types of knowledge or a distributed system with a communications
mechanism, the need for interchange of information is evident.

Just as in natural language understanding, the need for pragmatic domain support in program
acquisition is real. Although a system may get by with just its programming knowledge, lack of
knowledge about the specific application domain forces the user to do too much work. This has
been one of the weakest points of the PSI system, and was probably a result of the lack of
information sharing discussed in the preceding paragraph.

The role of the type of capabilities found in PMB should definitely be explored for less
grandiose, programming aid systems such as program editors. Even if full-fledged automatic
program acquisition systems never flourish, their concepts should be transported to the less
automatic systems that may be practical today.

Although such obvious consistency checks as producer-consumer analysis on variables are not

done

Limitations and Future Work 113

9.3.2 Control Structure

The ability of the system to make changes to parts of a program that have already been
acquired is very restricted. Once a fragment has been successfully processed, the result of that
processing cannot be undone. The capability to modify the results of previous fragments is
important, both for recovery from programming errors during initial specification and for
general program modification at a later time. Straightforward backtracking or, worse, redoing
the entire model building process with the new fragment are unappealing approaches. One
solution might be to use heuristic rules that would examine the most likely causes of an error
and then modify the model. Another possibility to be explored is to maintain a database of
dependencies and make those changes that are necessary. Many data dependencies are already
stored as cross-references in the program model. These could be used by specific rules for
simple information structure modifications, e.g., changing an existing program by adding a new
part to an information structure. When such a redefinition occurred, references to it by the
algorithm would be updated to maintain the consistency of the program model. A similar
approach has been taken in the domains of incremental circuit analysis [Stallman & Sussman-
77] and program verification (Moriconi-77, Moriconi-79].

Work should be done on problem solying that is more flexible, that can be totally user
controlled, system controlled, or some shade of each. In addition to the underlying problem
solving techniques Dohat will support such flexibility, models need to be developed so that the
system can help determine at which end of the control spectrum it should be. At the user end
of the spectrum, a user model of incremental, informal programming needs to be developed. In
the area of greater system control, models of structured programming or other programming
methodologies are needed.

Experience with the transformations made by PMB on fragments and models has pointed out
the need for efficiency knowledge at the model level. As observed in [Long-77], it appears that
efficiency considerations can never be completely divorced from the acquisition problem and
hidden away in a lower level automatic coding system. In an acquisition system with a large
body of transformations, more than one could be applicable to a part of the program being
acquired. The choice of which transformation, if any, to perform may rest in part on high

level "efficiency' heuristics. The right metric to be minimized is not obvious. Some possible
metrics are (I) program complexity and length, (1) execution time of the program when
interpreted using default data structure implementations for its high level information
structures, (3) cost of subsequent acquisition, (4) cost of coding, and (5) execution times of
potential coded target programs. Efficiency knowledge for the particular programming domain
would also be useful. The new CHI system is one attempt to consider efficiency at a higher
level than in PSI.

9.3.3 Program Modelling Language

An obvious limitation in almost any system of this type is the scope of the language accepted.

Two examples of useful constructs not in the program modelling language at present are
recursive procedures and arbitrary relations.

A general assertion mechanism would be a useful addition to PMB. Sucr' assertions may be
thought of as user supplied consistency checks that would be monitored either during model
building or program execution. This type of assertion would consist of a predicate on elements

__ _ _ __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ _ _I

114 Conclusion

(i.e., templates, slots, and values) of the program model and on the associated state at runtime
(e.g., the values of information structure instances, execution counts of statements, etc.). Such a
predicate could be asserted globally or locally to one or more templates. The assertion would be
evaluated however often and wherever in the model was necessary to assure that it remained
true. Assertions could be so guaranteed during model building, during model interpretation on
test data, or during execution of the coded version of the program, if appropriate statements
were added to the model itself 2.

9.3.4 Knowledge Base

Much more detailed observation and precise codification of rules about programming
informalities are needed. For informal specification to succeed, much richer languages for
informality than are available now are needed. Otherwise, users get frustrated. An analogous
problem has been observed with natural language understanding systems that aren't robust.

Any coding system has a finite amount of knowledge about how to implement various
combinations of elements found in a program model. So there will always be cases in which
two program models that behave the same but are syntactically different are implemented
differently because the automatic coder didn't recognize some special case in one of them. In
many of these cases, PMB should recognize the equivalence and transform them into a
canonical form. On the other hand, putting a program in a canonical form may remove special
cases about which the automatic coding system has special knowledge. In such cases
canonization should not be done. The conclusion is that the two phases, if they are kept
separate, should know about each other's capabilities so that they can work together, rather
than be at odds.

Only a few rules dealing with canonization have been written. Experiments should be done
using a sizable set of such rules in order to determine the gain in model conciseness and
subsequent coding capability. Then the tradeoff between adding more rules at the model
building versus coding level could be examined, Incorporating a general dedu,,aon mechanism
to help recognize when canonization may be done might also be explored.

Rules for such things as type consistency and coercion should be merged. One rule could either
attempt coercion or only check for consistency, depending upon models of how conservative the
user wants the system to be and how successful the system has been previously.

A much smarter demon compiler would be very useful. It would allow the antecedents of a
demon to be monitored either one at a time or in parallel. Demons could automatically be
created to trigger as soon as the failure, as well as the success, or a compound antecedent was
known.

Demons are just a form of simple concurrency, i.e., they are procedures blocking for an event
(i.e., a change in a database) to occur. Other concepts from concurrent programming and
operating systems (e.g., message passing) should be explored as ways to improve the technology
of demons.

And finally, every good artificial intelligence system needs an explanation system and a

2 The last method is a feature provided by ALGOLW via the ASSERT statement [Sites-721.

k6--

Limitations and Future Work 115

knowledge acquisition capability. The explanation system should be incremental, of course. It
should provide answers to specific questions in the form of a program and/or natural language.
The explainer should also be able to give a summary of the entire program.

9.4 Concluding Thoughts

The concepts and techniques that have been presented here will hopefully have an impact on
such soft vare systems areas as intelligent program editors and incremental compilers. The
notion that a programming system should provide incremental semantic support, not just
textual and syntactic support, should become more widespread. The idea of designing
programming languages that allow informalities, not just higher and higher level primitives, is
also an important avenue to explore.

It is my hope that the work described here, along with the related research of others, will lay
the groundwork for the development of practical program acquisition systems. Without this
advance, the promise of computers is destined to be limited by their accessibility only to the
programmer elite.

.-.. ~ .. -~.. --

117

Chapter 10. References

[Balzer et al.-74] Robert Balzer, Norton Greenfeld, Martin Kay, William Mann, Walter Ryder,
David Wilczynski, and Albert Zobrist, "Domain Independent Automatic Programming".
in Jack L. Rosenfeld, editor, Software, Information Processing 74: Proceedings of IFIP
Congress 74, Volume 2, American Elsevier Publishing Company, Inc., New York, New
York, 1974, pages 326-330.

(Balzer et al.-76] Robert Balzer, Neil Goldman, and David Wile, "On the Transformational
Implementation Approach to Programming", Proceedings, Second International Conference
on Software Engineering, Computer Society, Institute of Electrical and Electronics
Engineers, Inc., Long Beach, California, October 1976, pages 337-344.

[Balzer et al.-77] Robert Balzer, Neil Goldman, and David Wile, "Meta-Evaluation As a Tool
for Program Understanding", Fifth International Joint Conference on Artificial
Intelligence-1977 (IJCAI-77): Proceedings of the Conference, Volume I, Computer
Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, August 1977,
page 398-403.

[Balzer et al.-78) Robert Balzer, Neil Goldman, and David Wile, 'Informality in Program
Specifications", IEEE Transactions on Software Engineering, Volume SE-4, Number 2,
March 1978, pages 94-103.

[Banatre et al.-79] J. P. Banatre, J. P. Routeau, and L. Trilling, "An Event Driven Compiling
Technique", Communications of the ACM, Volume 22, Number 1, January 1979, pages 34-
42.

[Barstow-79A] David R. Barstow, Knowledge Based Program Construction, Elsevier North
Holland, Inc., New York, New York, 1979.

[Barstow-79B) David R. Barstow, "The Roles of Knowledge and Deduction in Program
Synthesis", .IJCAI-79: Proceedings of the Sixth International Joint Conference on
Artificial Intelligence, Volume 1, Computer Science Department, Stanford University,
Stanford, California. August 1979, pages 37-43.

[Barth-741 C. Wrandle Barth, "Notes on the Case Statement", Software-Practice and
Experience, Volume 4, Number 3, July-September 1974, pages 289-298.

[Biermann-76) Alan W. Biermann, "Approaches to Automatic Programming", in Morris
Rubinoff and Marshall C. Yovits, editors, Advances in Computers, Volume 15, Academic
Press, Inc., New York, New York, 1976, pages 1-63.

[Bobrow & Raphael-74] Daniel G. Bobrow and Bertram Raphael, "New Programming
Languages for Artificial Intelligence Research", Computing Surveys, Volume 6, Number 3,
September 1974, pages 153-174.

LBobrow & Winograd-77] Daniel G. Bobrow and Terry Winograd, "An Overview of KRL, a
Knowledge Representation Language", Cognitive Science, Volume 1, Number 1, January
1977, pages 3-46.

__. ...____

118 References

[Bobrow et al.-7 7] Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay, Donald A. Norman,
Henry Thompson, and Terry Winograd, 'GUS: A Frame Driven Dialog System",
Artificial Intelligence, Volume 8, Number 2, April 1977, pages i55-173.

[Breitbard & Wiederhold-69) Gary Y. Breitbard and Gio Wiederhold, "The ACME
Compiler", in A. J. H. Morrell, editor, Mathematics, Software, Information Processing
68: Proceedings of IFIP Congress 1968, Volume i, North-Holland Publishing Company,
Amsterdam, The Netherlands, 1969, pages 358-365.

[Brooks-75A] Ruven Brooks, A Model of Human Cognitive Behavior in Writing Code for
Computer Programs, Ph.D. thesis, Psychology Department, technical report, Computer
Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, May 1975.

[Brooks-75B] Ruven Brooks, "A Model of Human Cognitive Behavior in Writing Code for
Cornputer Programs", Advance Papers of the Fourth International Joint Conference on
Artificial Intelligence, Volume 2, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, Massachusetts, September 1975, pages 878-884.

(Brooks-77] Ruven Brooks, "Towards a Theory of the Cognitive Processes in Computer
Programming", International Journal of Man-Machine Studies, Volume 9, Number 6,
November 1977, pages 737-751.

(Burstall & Darlington-77) R. M. Burstall and John Darlington, "A Transformation System for
Developing Recursive Programs", Journal of the Association for Computing Machinery,
Volume 24, Number 1, January 1977, pages 44-67.

(Carbonell-70A] Jaime R. Carbonell, Mixed Initiative ManiComputer Instructional Dialogs,
Ph.D. thesis, Electrical Engineering Department, Massachusetts Institute of Technology,
Report 1971, Bolt, Beranek, and Newman, Inc., Cambridge, Massachusetts, 31 May 1970.

[Carboneli-70B] Jaime R. Carbonell, "Al in CAI: An Artificial Intelligence Approach to
Computer Assisted Instruction", IEEE Transactions on Man-Machine Systems, Volume
MMS-I 1, Number 4, December 1970, pages 190-202.

[Charniak-72] Eugene Charniak, Toward a Model of Children's Story Comprehension, Ph.D.
thesis, Electrical Engineering Department, TR-266, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts, December 1972.

[Dahl et al..72] O.-J. Dahi, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming,
Academic Press, Inc., New York, New York, 1972.

[Davis et a:..77] Randall Davis, Bruce Buchanan, and Edward Shortliffe, "Production Rules As
a Representation for a Knowledge Based Consultation Program", Artificial Intelligence,
Voliume 8, Number 1, February 1977, pages 15-45.

(Donzeau-Gouge et al.-75] V. Donzeau-Gouge, G. Huet, C. Kahn, B. Lang, and j. J. Levy, "A
Structure Oriented Program Editor: A First Step Towards Computer Assisted
Programming", International Computing Symposium 1975, American Elsevier Publishing
Company, Inc., New York, New York, 1975.

119

[Earley-73AJ Jay Earley, "Relational Level Data Structures for Programming Languages", Acta
informatica, Volume 2, 1973, pages 293-309.

(Earley-73B] Jay Earley, An Overview of the VERS2 Project: High Level Languages in
Automatic Programming, Memo ERL-M416, Electronics Research Laboratory, Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley,
California, December 1973.

(Earley-743 Jay Earley, "High Level Operations in Automatic Programming", Proceedings of a
Symposium on Very High Level Languages, SIGPLAN Notices, Volume 9, Number 4,
April 1974, pages 34-42.

(Elschlager & Phillips-79] Robert Elschlager and Jorge Phillips, Automatic Programming,
Memo HPP-79-24, Report STAN-CS-79-758, Heuristic Programming Project, Computer
Science Department, Stanford University, Stanford, California, November 1979.

(Ginsparg-78] Jerrold M. Ginsparg, Natural Language Processing in an Automatic
Programming Domain, Ph.D. thesis, Memo AIM-316, Report STAN-CS-78-671, Artificial
Intelligence Laboratory, Computer Science Department, Stanford University, Stanford,
California, June 1978.

[Goldman et' al.-77] Neil Goldman, Robert Balzer, and David Wile, "The Inference of Domain
Structure from Informal Process Descriptions", Proceedings of the Workshop on PatternDirected Inference Systems, SIGART Newsletter, Number 63, June 1977, pages 75-82.

(Green-69] Claude Cordell Green, The Application of Theorem Proving to Question Answering
Systems, Ph.D. thesis, Electrical Engineering Department, Memo AIM-96, Report STAN-
CS-69-138, Artificial Intelligence Laboratory, Computer Science Department, Stanford
University, Stanford, California, June 1969 [reprinted by Garland Publishing, Inc., New
York, New York, 1979].

[Green-76A] Cordell Green, 'The Design of the PSI Program Synthesis System", Proceedings,
Second International Conference on Software Engineering, Computer Society, Institute of
Electrical and Electronics Engineers, Inc., Long Beach, California, October 1976, pages 4-
18.

(Green-76B] Cordell Green, "An Informal Talk on Recent Progress in Automatic
Programming", Lectures on Automatic Programming and List Processing, PIPS-R-12,
Electrotechnical Laboratory, Tokyo, Japan, November 1976, pages 1-69.

(Green et al.-74] C. Cordell Green, Richard J. Waldinger, David R. Barstow, Robert
Elschlager, Douglas B. Lenat, Brian P. McCune, David E. Shaw, and Louis 1. Steinberg,
Progress Report on Program Understanding Systems, Memo AIM-240, Report STAN-CS-
74-444, Artificial Intelligence Laboratory, Computer Science Department, Stanford
University, Stanford, California, August 1974.

[Green et a1.-79] Cordell Green, Richard P. Gabriel, Elaine Kant, Beverly I. Kedzierski, Brian
P. McCune, Jorge V. Phillips, Steve T. Tappel, and Stephen J. Westfold, "Results in
Knowledge Based Program Synthesis", IJCAI-79: Proceedings of the Sixth International
Joint Conference on Artificial Intelligence, Volume I, Computer Science Department,
Stanford University, Stanford, California, August 1979, pages 342-344.

~bE., .

120 References

[Hammer et al..74] M. M. Hammer, W. G. Howe, and I. Wladawsky, "An Interactive Business
Definition System", Proceedings of a Symposium on Very High Level Languages,
SIGPLAN Notices, Volume 9, Number 4, April 1974, pages 25-33.

[Hayes & Simon-74] J. R. Hayes and H. A. Simon, "Understanding Written Problem
Instructions", in Lee W. Gregg, editor, Knowledge and Cognition. Halsted Press Division,
John Wiley and Sons, Inc., New York, New York, 1974, pages 167-200.

[Heidorn-72] George E. Heidorn, Natural Language Inputs to a Simulation Programming
System, Ph.D. thesis, Report NPS-55HD72101A, Naval Postgraduate School, Monterey,
California, October 1972.

[Heidorn-74] George E. Heidorn, "English As a Very High Level Language for Simulation
Programming", Proceedings of a Symposium on Very High Level Languages,
SIGPLAN Notices, Volume 9, Number 4. April 1974, pages 91-100.

(Heidorn-75] George E. Heidorn, "Simulation Programming through Natural Language
Dialog", in Murray A. Geisler, editor, Logistics, North-HollandITIMS Studies in the
Management Sciences, Volume 1, North-Holland Publishing Company, Amsterdam, The
Netherlands, 1975, pages 71-85.

[Heidorn-76] 0. E. Heidorn, "Automatic Programming through Natural Language Dialog: A
Survey", IBM Journal of Research and Development, Volume 20, Number 4, July 1976,
pages 302-313.

[Hewitt & Smith-75J Carl E. Hewitt and Brian Smith, "Towards a Programming Apprentice",
IEEE Transactions on Software Engineering, Volume SE-I, Number 1, March 1975.
pages 26-45.

(Hobbs-77A] Jerry R. Hobbs, From "Well Written" Algorithm Descriptions into Code, Research
Report 77-1, Computer Sciences Department, City College, City University of New York,
New York, New York, July 1977.

[Hobbs-77B] Jerry R. Hobbs, "What the Nature of Natural Language Tells Us about How to
Make Natural Language-Like Programming Languages More Natural", Proceedings of
the Symposium on Artificial Intelligence and Programming Languages, SIGPLAN
Notices, Volume 12, Number 8, SIGART Newsletter, Number 64, August 1977, pages 85-
93.

[Kant-79A] Elaine Kant, "A Knowledge Based Approach to Using Efficiency Estimation in
Program Synthesis", IJCAI-79: Proceedings of the Sixth International Joint Conference
on Artificial Intelligence, Volume 1, Computer Science Department, Stanford University,
Stanford, California, August 1979, pages 457-462.

[Kant.79B] Elaine Kant, Efficiency Considerations in Program Synthesis: A Knowledge Based
Approach, Ph.D. thesis, Memo AIM.331, Report STAN-CS-79-755, Artificial Intellhgence
Laboratory, Computer Science Department, Stanford University, Stanford, California,

Technical Report SCI.ICS.U.79.1, Computer Science Department, Systems Control, Inc.,
Palo Alto, California, September 1979.

-_ & _ _ f

121

(Kennedy & Schwartz-75] K. Kennedy and J. Schwartz, "An Introduction to the Set
Theoretical Language SETL", Computers and Mathematics, with Applications, Volume i,
Number I, 1975, pages 97-119.

EKibler-781 Dennis Francis Kibler, Power, Efficiency, and Correctness of Transformation
Systems, Ph.D. thesis, Computer Science Department, University of California. Irvine,
California, 1978.

[Kibler et al.-77] D. F. Kibler, J. M. Neighbors, and T. A. Standish, "Program Manipulation
via an Efficient Production System", Proceedings of the Symposium on Artificial
Intelligence and Programming Languages, SIGPLAN Notices. Volume 12, Number 8,
SIGART Newsletter, Number 64, August 1977, pages 163-173.

[Knuth-69] Donald E. Knuth, Seminumerical Algorithms, The Art of Computer Programming,
Volume 2, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1969.

(Knuth-73A] Donald E. Knuth, Fundamental Algorithms, The Art of Computer Programming,
Volume i, Second Edition, Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1973.

[Knuth-73B] Donald E. Knuth, Sorting and Searching, The Art cf Computer Programming,
Volume 3, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1973.

[Knuth-741 Donald E. Knuth, "Structured Programming with Go To Statements", Computing
Surveys, Volume 6, Number 4, December 1974, pages 261-301 (reprinted in Raymond T.
Yeh, editor, Software Specification and Design, Current Trends in Programming
Methodology, Volume 1, Chapter 6, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1977, pages 140-194].

[Lenat-76] Douglas B. Lenat, AM: An Artificial Intelligence Approach to Discovery in
Mathematics As Heuristic Search, Ph.D. thesis, Memo AIM-286, Report STAN-CS-76-
570, Artificial Intelligence Laboratory, Computer Science Department, Stanford
University, Stanford, California, July 1976.

[Lenat-77J Douglas B. Lenat, "Automated Theory Formation in Mathematics", Fifth
International Joint Conference on Artificial Intelligence-1977 (IJCAI-77): Proceedings of
the Conference, Volume 2, Computer Science Department, Carnegie-Mellon University.
Pittsburgh, Pennsylvania, August 1977, pages 833-842.

[Lesser & Erman-77] Victor R. Lesser and Lee D. Erman, "A Retrospective View of the
HEARSAY.II Architecture", Fifth International Joint Conference on Artificial
Intelligence-1977 (IJCAI-77): Proceedings of the Conference, Volume 2, Computer
Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, August 1977,
pages 790-800.

[Lesser et al.-75J Victor R. Lesser, Richard D. Fennell, Lee D. Erman, and D. Raj Reddy,

"Organization of the HEARSAY-II Speech Understanding System", IEEE Transactions
on Acoustics, Speech, and Signal Processing, Volume ASSP-23, Number 1, February 1975,
pages i1i-241.

122 References

[London-77] Ralph L. London, "Perspectives on Program Verification", in Raymond T. Yeh,
editor, Program Validation, Current Trends in Programming Methodology, Volume 2,
Chapter 6, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977, pages 151-172.

(Long-77] William James Long, A Program Writer, Ph.D. thesis, Department of Electrical
Engineering and Computer Science, TR-187, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts, November 1977.

[Loveman-77] David B. Loveman, "Program Improvement by Source-to-Source
Transformation", Journal of the Association for Computing Machinery, Volume 24,
Number I, January 1977, pages 121-115.

(Luckham-77] David C. Luckham, "Program Verification and Verification Oriented
Programming", invited paper, in Bruce Gilchrist, editor, Information Processing 77:
Proceedings of IFIP Congress 77, ElsevierlNorth-Holland Publishing Company, Inc., New
York, New York, 1977, pages 783-793.

[Masinter-79] Larry M. Masinter, Global Program Analysis in an Interactive Environment,

Ph.D. thesis, Computer Science Department, Stanford University, Stanford, California,
September 1979.

(McCune-77] Brian P. McCune, "The PSI Program Model Builder: Synthesis of Very High
Level Programs", Proceedings of the Symposium on Artificial Intelligence and
Programming Languages, SIGPLAN Notices, Volume 12, Number 8, SIGART
Newsletter, Number 64, August 1977, pages 130-I 39.

[Minsky-75J Marvin Minsky, "A Framework for Representing Knowledge", in Patrick Henry
Winston, editor, The Psychology of Computer Vision, McGraw-Hill Book Company, Inc.,
New York, New York, 1975, pages 211-277.

(Moriconi-77 Mark S. Moriconi, A System for Incrementally Designing and Verifying
Programs, Ph.D. thesis, University of Texas, Austin, Texas, Volume I, Research Report
RR.77-65, Information Sciences Institute, University of Southern California, Marina del
Rey, California, November 1977.

[Moriconi-79] Mark S. Moriconi, 'A Designer/Verifier's Assistant", IEEE Transactions on
Softwar" Engineering, Volume SE-5, Number 4, .July 1979, pages 387-4101.

[Nelson-76] Bruce Nelson, The PSI Interpreter, M.S. project report, Artificial Intelligence
Laboratory, Computer Science Department, Stanford University, Stanford, California,
June 1976.

[Phillips-77] Jorge V. Phillips, "Program Inference from Traces Using Multiple Knowledge
Sources", FiftA International Joint Conference on Artificial Intelligence-1977 (IJCAI-77):
Proceedings of the Conference, Volume 2, Computer Science Department, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, August 1977, page 812.

[Phillips-791 Jorge V. Phillips, Knowledge Based Algorithm Development, Ph.D. thesis,
Electrical Engineering Department, Stanford University, Stanford, California, technical
report, Computer Science Department, Systems Control, Inc., Palo Alto, California, 1979
(in progress).

123

(Pressburger-78] Thomas T. Pressburger, The Readable Program Model Generator, M.S. project
report, Artificial Intelligence Laboratory, Computer Science Department, Stanford
University, Stanford, California, June 1978.

(Reynolds-691 John C. Reynolds, "Automatic Computation of Data Set Definitions", in A. J. H.
Morrell, editor, Mathematics, Software, Information Processing 6S: Proceedings of IFIP
Congress 1968, Volume 1, North-Holland Publishing Company, Amsterdam, The
Netherlands, 1969, pages 456-461.

(Rich-79] Charles Rich, A Library of Programming Plans with Applications to Automated
Analysis, Synthesis, and Verification of Programs, Ph.D. thesis, Department of Electrical
Engineering and Computer Science. Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1979 (in progress).

(Rich & Shrobe-78] Charles Rich and Howard E. Shrobe, "Initial Report on a LISP
Programmer's Apprentice", IEEE Transactions on Software Engineering, Volume SE-4,
Number 6, November 1978, pages 456-467.

(Rich et al.-79] Charles Rich, Howard E. Shrobe, and Richard C. Waters, "Overview of the
Programmer's Apprentice", IJCAI-79: Proceedings of the Sixth International Joint
Conference on Artificial Intelligence, Volume 2, Computer Science Department, Stanford
University, Stanford, California, August 1979, pages 827-828.

[Rieger-77] Chuck Rieger, "Spontaneous Computation in Cognitive Models", Cognitive Science,
Volume 1, Number 3, July 1977, pages 315-354.

[Robinson & Parnas-73] L. Robinson and D. L. Parnas, A Program Holder Module, technical
report, Computer Science Department, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, June 1973.

(Rulifson et al.-721 Johns F. Rulifson, Richard J. Waldinger, and Jan A. Derksen, "A
Language for Writing Problem Solving Programs", in C. V. Freiman, editor,
Foundations and Systems, Information Processing 71: Proceedings of IFIP Congress 71,
Volume I, North-Holland Publishing Company, Amsterdam, The Netherlands, 1972,
pages 201-205.

(Schonberg et al.-79] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir, "Automatic
Data Structure Selection in SETL", Conference Record of the Sixth Annual ACM
Symposium on Principles of Programming Languages, Association for Computing
Machinery, New York, New York, January 1979, pages 197.210.

(Schwartz-741 J. Schwartz, Structureless Programming, or The Notion of "Rubble" and the
Reduction of Programs to Rubble, SETL Newsletter, Number 135A, SETL Project,
Computer Science Department, Courant Institute of Mathematical Sciences, New York
University, New York, New York, 12 July 1974.

[Schwartz-751 Jacob T. Schwartz, On Programming: An Interim Report on the SETL Project,
revised, technical report, SETL Project, Computer Science Department, Courant Institute
of Mathematical Sciences, New York University, New York, New York, June 1975.

124 References

(Schwartz-78] J. T. Schwartz, "Program Genesis and the Design of Programming Languages".
in Raymond T. Yeh, editor, Data Structuring, Current Trends in Programming
Methodology, Volume 4, Chapter 7, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1978, pages 185-215.

(Selfridge-59] 0. G. Selfridge, "Pandemonium: A Paradigm for Learning", Mechanization of
Thought Processes, Volume i, Her Majesty's Stationery Office, London, England, 1959,
pages 511-531.

(Shortliffe.76] Edward Hance Shortliffe, Computer Based Medical Consultations: MYCIN.
American Elsevier Publishing Company, Inc., New York, New York, 1976.

[Shrobe-79A] Howard Elliot Shrobe, Dependency Directed Reasoning for Complex Program
Understanding, Ph.D. thesis, Department of Electrical Engineering and Computer Science,
TR-503, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, April 1979.

[Shrobe-79B] Howard Elliot Shrobe, "Dependency Directed Reasoning in the Analysis of
Programs Which Modify Complex Data Structures", IJCAI-79: Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, Volume 2, Computer Science

Department, Stanford University, Stanford, California, August 1979, pages 829-835.

[Sites-72] Richard L. Sites, ALGOLW Reference Manual, Report STAN-CS-71-230, Computer
Science Department, Stanford University, Stanford, California, February 1972.

(Stallman & Sussman-771 Richard M. Stallman and Gerald J. Sussman, "Forward Reasoning
and Dependency Directed Backtracking in a System for Computer Aided Circuit
Analysis", Artificial Intelligence, Volume 9, Number 2, October 1977, pages 135-196.

[Steinberg-79] Louis I. Steinberg, A Dialog Moderator for Program Specification Dialogs in the
PSI System, Ph.D. thesis, Artificial Intelligence Laboratory, Computer Science
Department, Stanford University, Stanford, California, 1979 (in progress).

(Tappel-79J Steve T. Tappel, Intelligent Guidance of Algorithm Design, technical report.
Computer Science Department, Systems Control, Inc., Palo Alto, California, 1979 (in
progress).

[Teitelman-72A] Warren Teitelman, "'Do What I Mean': The Programmer's Assistant",
Computers and Automation, Volume 21, Number 4, April 1972, pages 8-11.

[Teitelman-72B] Warren Teitelman, "Automated Programmering: The Programmer's
Assistant", 1972 Fall Joint Computer Conference, AFIPS Conference Proceedings,
Volume 41, Part 2, AFIPS Press, Montvale, New Jersey, December 1972, pages 917-921.

[Teitelman-771 Warren Teitelman, "A Display Oriented Programmer's Assistant", Fifth
International Joint Conference on Artificial Intelligence-1977 (IJCAI-77): Proceedings of
the Conference, Volume 2, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, August 1977, pages 905-915.

[Teitelman-78J Warren Teitelman, INTERLISP Reference Manual, Palo Alto Research

Center, Xerox Corporation, Palo Alto, California, October 1978.

125

(Van Wijngaarden et al.-69] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, and C. H. A.
Koster, 'Report on the Algorithmic Language ALGOL68", Numerische Mat/ematik,
Volume 14, Number 2, 1969, pages 79-218.

[Waters-781 Richard C. Waters, Automatic Analysis of the Logical Structure of Programs, Ph.D.
thesis, Department of Electrical Engineering and Computer Science, TR-492, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, December 1978.

(Waters-79] Richard C. Waters, *A Method for Analyzing Loop Programs", IEEE
Transactions on Software Engineering, Volume SE-.5, Number 3, May 1979, pages 237-
2417.

[Wilczynski-75] David Wilczynski, A Process Elaboration Formalism for Writing and Analyzing
Programs, Ph.D. thesis, Computer Science Department, Research Report RR-75-35,
Information Sciences Institute, University of Southern California, Marina del Rey,
California, October 1975.

[Wile et al.-77] David Wile, Robert Balzer, and Neil Goldman, 'Automated Derivation of
Program Control Structure from Natural Language Program Descriptions", Proceedings
of the Symposium on Artificial Intelligence and Programming Languages, S1GPLAN
Notices, Volume 12, Number 8, SIGART Newsletter, Number 64, August 1977, pages 77-
84.

(Winograd-74] Terry Winograd, "Breaking the Complexity Barrier Again", in Richard E.
Nance, editor, Proceedings of ACM SIGPLAN-SIGIR Interface Meeting:
Programming Languages-information Retrieval, SIGIR FORUM, Volume 9, Number
3, Winter 1974, SIGPLAN Notices, Volume 10, Number 1, January 1975, pages 13-30.

(Winston-75] Patrick Henry Winston, "Learning Structural Descriptions from Examples", in
Patrick Henry Winston, editor, The Psychology of Computer Vision, McGraw-Hll Book
Company, Inc., New York, New York, 1975, pages 157-209.

[Wirth-73] Niklaus Wirth, Systematic Programming: An Introduction, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1973.

[Yonke-75] Martin D. Yonke, A Knowledgeable, Language Independent System for Program
Construction and Modification, Ph.D. thesis, Computer. Science Department, University of
Utah, Salt Lake City, Utah, Research Report RR.75-42, Information Sciences Institute,
University of Southern California, Marina del Rey, California, October 1975.

[Zahn-74J Charles T. Zahn, Jr., 'A Control Statement for Natural Top Down Structured
Programming", in B. Robinet, editor, Programming Symposium: Proceedings, Colloque sur
la Programmation, Springer-Verlag, New York, New York, 1974, pages 170-180.

.t~t.C%.~'.-', .-- aAJ.SdS~a.I~i~ A

127

Appendix A. Proposed Program Reference Language

As introduced in Chapter 5, the program reference language is designed to provide a "where"
capability for program fragments. A program reference specification given in the program
reference language doesn't necessarily identify a unique point in the program model. A
reference specification is just a pattern to be matched against the model in order to constrain
which model templates are considered.' A specification can be universally quantified, which
indicates that all templates that match should be transformed by the "what" part of the
fragment. If a specification is not universally quantified, then there is an error condition if
more than one template matches (i.e., the specification is ambiguous).2

One way to view a universally quantified fragment is as a demon that monitors those points in
the program (or conditions during execution) and is executed when triggered by the
appropriate conditions. Seen in this light, fragments are related to Schwartz's notion of
independent, parallel chunks or "rubble" (Schwartz-74, Schwartz-78]. However, whereas
programs written in terms of pieces of rubble would presumably be compiled or interpreted all
at once, fragments are incrementally integrated into a modelling language that uses standard
sequential control structures.

A program reference pattern is a declarative specification of a set of relevant program model
templates: no particular search strategy is presumed for how the pattern match is implemented.
For example, consider a pattern that specifies all loops in the model with a particular property.
A straightforward pattern matcher might match this pattern to the model by searching every
template in the model for those that are loops with the required property. A smarter matcher
would know that the root template of the program model contains cross-references to every
template by type3 and would therefore limit its search to the list of all loop templates. So we
observe that this small part of the great automatic programming problem may be viewed as an
automatic programming problem itself, complete with program specification and optimization
considerations.

Besides its utility in automatic programming systems, the program reference language may be of
use in research on intelligent program editors. The reference capabilities described are related
to those provided by many interactive text editors, especially those for specific programming
languages. Most general purpose text editors only provide low level editing primitives that
treat their data as an arbitrary character string4. Language oriented editors introduce syntactic
and contextual editing, eliminating most of the need and perhaps even the capability for purely
textual editing. An excellent example of such an editor is the one embedded in the
INTERLISP system (Teitelman.78]. INTERLISP also has limited methods for specifying

The program reference language is a special purpose pattern matching language. Much more

general matching schemes are described for KRL [Bobrow & Winograd-77].

2 Another possibility would be to order the templates and use the one that was the "best"

match.

3 These cross-references correspond to the notion of index keys in KRL [Bobrow & Winograd-
77].

4 Or even worse, the data is treated as a list of individual lines of text.

IIj.

128 Appendix A

historically and semantically, using the "history list" feature of the Programmer's Assistant
[Teitelman-72B] and the program analysis package called MASTERSCOPE [Masinter-79].
These three subsystems of INTERLISP have somewhat differing goals from the present effort,
and in any case are provided via separate mechanisms utilizing separate languages5 .

The rest of this appendix defines the capabilities envisioned for the program reference
language by the types of references allowed.

A.1 Textual References

A point in a program can easily be specified (partially, at least) by its position in a text string
representing the program. The two standard ways are by line number and by substring match.
In the program reference language both of these methods make use of the "readable" program
model, a compressed, linear form of the model that can be printed for the user upon request
(Pressburger-781 The model is represented in a PASCAL-like notation that optionally includes
line numbers. This form of the model will be referred to as the model listing to distinguish it
from the program model itself.

The pattern

line 500

in the program reference language limits the search for the specified program model template to
those templates represented in line 500 of the readable model listing.

A pattern consisting of the character string

"output"

matches all templates represented by the word "output" in the readable model listing.' The
universally quantified pattern

V "output"

results from a user command such as "Change 'output' to 'print' everywhere.". Note the
distinction between these two patterns. Both may match zero or more templates, but the former
pattern requests that the associated action in the fragment be done to exactly one template.
while the latter pattern requests that it be done to all matching templates.

Most types of patterns can be combined to form conjunctive expressions. For example,

line 2100, "output"

The most interesting one is MASTERSCOPE's fill-in-the-blank command language, which
accepts limited English phrases.

6 We say *represented by" because the string pattern itself may never occur in the actual
program model. For example, the reserved words "begin" and "end" are used in the readable
model listings to represent templates of type composite.

Proposed Program Reference Language 129

matches only model templates represented by the occurrences of the string "output" in line 2100
of the model listing.

The pattern variable "." is used to match arbitrary individual characters, with a superscript
specifying the number to be matched. "." or ".0, matches zero characters, hence is equivalent to
concatenating the neighboring strings. The pattern

"begin". o "end"

will match all blocks with exactly ten characters between the starting and ending keywords.
Borrowed from the language of regular expressions, the superscript variable "e" matches zero or
more characters, and ".", one or more. For example, the-pattern

"begin" . "end"

matches all blocks.

A pattern may be subscripted by a sequence of numbers specifying which matches of the
pattern are to be retained. To do this, a starting point and an ordering on potential matches
must be specified. In the case of string matches, this ordering starts at the beginning of text
and proceeds linearly through the text to the end. For example,

"output"5

matches only the template corresponding to the fifth occurrence of the string "output" statement
in the listing. As a more general example,

"Output",3=S,3

matches the first, third, fourth, and fifth templates from the beginning and the fourth template
from the last corresponding to "output". We could also extend the syntax to allow the exclusion
of certain templates that match. As later examples show, subscripts may be added to any
expression to constrain the extent of the match.

A.2 Syntactic (Lexical) References

Specifying program parts syntactically requires a shift from specifying text in the model listing
to specifying templates in the program model itself. The model is essentially a parse tree of the
program, with templates as nodes in the tree. The closest related work to this is the Find
command with patterns in the INTERLISP editor [Teitelman-78, Section 9.3.2].

The simplest way to specify a model template is by giving its unique name. For example,

template update

specifies the unique template called update in the model.

If the name of the template isn't known, then the values of slots may be used to identify the
desired template. The phrase "where x is output to disk or tape" may be represented as

-- mob*___________

ISO Appendix A

template n I n.type-output, n.AIUjinstance-x, n.destinatione{disk,tape}

Pattern match expressions are separated by commas representing logical conjunction.
Expressions are matched in order, left to right, to avoid potential ambiguities.7 A way to
visualize the matching process is to consider it as a series of constraints applied to the set of all
templates in the model. The first conjunct reduces the set of potentially matching templates to a
subset of all the templates. The next conjunct further reduces the size of this subset (constrains
the match), and so on until the last conjunct is applied and the final set of matching templates
is left.

A slot value expression is of the form

<template>.<slot> <operator> <value>

where the operator can be equality, inequality, set membership, set nonmembership, and other
operations where appropriate. If a name appearing in the value position of some expression
also appears in the template position of another expression, then that name is assumed to be a
variable; otherwise, it is assumed to be a constant.

If a slot name (e.g., type) isn't preceded by a template name, then the template named between
template and "1" at the beginning of the pattern is assumed. Thus the following pattern is
equivalent to the one above:

template n I type-output, AIU-instance-x, destinatione{disk,tape}

If the action of the fragment is to apply to all such output statements, the pattern used is

V template n I type-output, AIU-instance-x, destination edisk,tape}

Sometimes one wants to obtain a slot value some templates away from the current template, and
the names of the intervening templates aren't needed for other purposes. In such a case, slot
names may be strung together in one expression, separated by periods. Thus, the following two
patterns are equivalent.

template n I n.true-action-t, t.body-b, b.type-composite
template n I n.true-action.body.type-composite

Of course, as in any pattern match, if the value of the slot doesn't match or the slot doesn't
have a value at all, the match fails.

Subscripts may be used to limit the matches that occur with these conjuncts. The default
ordering is lexical order, i.e., the depth first traversal order that templates are visited when a
listing is being created. Because all information structures and procedures are considered
global in the program modelling language, lexical order puts all information structure
prototypes first, then information structure instances, then procedure declarations, and finally
the main algorithm body. The following three examples demonstrate the power of subscripting:

7 An example of such an ambiguity appears later in this section.

'It

Proposed Program Reference Language 131

template n (in.type-input, n.type-returned=a) 3
template n ((n.type-input)3 , n.type-returned-a
template n I (n.type-input)3 , (n.type-returned~a) 3

The first expression matches the third input operation of the model that returns a value of type
a; otherwise, no template is matched. The second expression is more restrictive. It matches the
third input operation if that input returns a value of type a; othrwise, no template is matched.
The final expression can't match anything. It first selects a set of templates coraining only the
third input operation (if such exists) and then tries to select the third element of this set that
returns a value of type a. Obviously there can't be a third element in a set with only one
member.

Constraining a group of templates to some order is done by enclosing the sequence of templates
in braces and separating the template names by an ordering relation (or pattern variable). For
lexical ordering, the pattern variable is a period. An unsuperscripted period may be omitted.
For example, the two patterns

template n I type-output, {foo .bar . n},foo.type-composite, bar.type=test
template n I type-output, (foo bar n}, foo.type-composite, bar.type-test

are equivalent and match all output operations that immediately follow a test that immediately
follows a composite.

Similar to the string matching in the previous section, determinate (with a fixed number of
elements) and indeterminate (with either zero or more or one or more elements) sequences of
templates can be specified; e.g.,

template n) ffoo .* bar .2 n},Joo.type-input, bar.type-output

specifies the template exactly three templates lexically after an output that lexically follows an
input.8

If matches are restricted by subscripting, then ambiguous patterns can occur unless the
evaluation of conjuncts is limited to a particular order, in this case left to right. For example,
in the pattern

template n I (a .* n), (type-test)2

a left-to-right matching order finds the second test after a, while right-to-left order will find no
matches if two or more tests occur before a.

Template paths through the program model tree are specified as sequences of template names
separated by ""s. A I b means that b is a child of a.9 A 15 b means that there are exactly five
intervening templates between a and b. A .* b means that there is an indeterminate number of

3 Thus, a single *." is equivalent to '.0,.

9 If one knew that s was the name of the slot in a that pointed to b, then an equivalent form
would be a.s - b. However, the form a I b is more general, since it allows b to be located in any
slot of a that can point to a child. Typically there is more than one.

132 Appendix A

intervening templates. *The statement that outputs a collection of size less than twenty" is
expressible as

template n I type-output, AIU-instance-x, fy I x), y.type-collection, y.size<20

"The output statement that occurs in a conditional that is three levels down inside some block"
becomes

template n 1 type-output, {foo J bar 0* n), foo.type-composite, bar.type-test

Here we also note the following equivalence, for arbitrary pattern variable "e" (e.g., ".", '1"):

template I ({x e* y})i a template y I (x *i_' Y1

The lefthand side matches all templates y "after" x and then selects the ith one. The righthand
side directly selects the ith template after x.

A.3 Contextual References

Contextual reference, i.e., specifying a place in the program relative to the last place discussed,
is often extremely useful. To refer to the current template explicitly, we introduce the symbol

10 We can now refer, for example, to templates before, after, below, and above the current
one. The first example below specifies the template that lexically follows the current one. If the
current template is the first part of a composite, this statement would specify the second part.
Also note the last example, which allows one to specify the closest test template above the
current template.

template n I 1*. i}

template n I fi .

template n I) I* n)
template n I (in ,* .,), type-test),

Another type of useful reference constrains the pattern to match the "clor-st" template in any
direction to the current template context. Closeness is defined in terms of the number of
intervening templates along the path between the two templates in question. We introduce two
symmetric pattern variables that provide two ways to define paths. A .. 6 means that a occurs
either before or after b in lexical order. A It b means that a occurs either on the path from the
root node of the program model tree to 6 or somewhere in the subtree below b. If two or more
templates tie for closest, then they all match.

template n I ((* .. n), type-composite),
template n I (j 1 n), type-test),

The first example above specifies the closest composite lexically to the current location. The
second specifies the closest test that either contains or is contained in the current template.

1o This context variable provides a simple but useful form of the KRL notion of a "focus list"
of templates (Bobrow & Winograd-771.

I

Proposed Program Reference Language 133

A.4 Historical References

Referring to the program model in chronological order of specification requires maintenance of
a history list [Teitelman-72B] of fragments (not necessarily the same as the tree of more general
topics discussed, cf. the PSI dialog moderator (Steinberg-79]). Along with each fragment, a list
of model templates that were affected by the fragment is kept.

Now we introduce the pattern variable "<". A < b constrains template a to occur in the history
list immediately before template b. Here are some examples of its use:

template - {n < ,-
template n in <8 :.}

template n {n <,
-

template n ({n <* *}, type-test),

Since "A" io the current template, it always refers to the latest entry in the history list. For
example. the last expression above refers to the most recently discussed test, excluding the
current template.

Historical patterns may constrain matching of the history list to an appropriate order. For this
purpose, we introduce the pattern variable "<>". A <> b means that b occurs in the history list
somewhere either before or after a. As examples, the phrases "the most recent output statement
discussed", 'the earliest output statement discussed", and *the closest output statement to the
point where template a was discussed" might be expressed as

template n I (In <* *}, type-output),
template n I ({n <* *), type-output)N
template n I (a <> n}, type-output),

A.5 Semantic References

Templates can be specified semantically by their functionality in the model and by control and
dataflow. Simple forms of these references are available in the MASTERSCOPE package of
INTERLISP [Masinter-791. The notion of semantic functions is exemplified below by type,
returns, and referents, but this is not a complete list of the necessary functions.

As an example of reference by function, the following pattern finds all (control structure)
templates that contain below them a set operation that returns a Boolean value.

template n I fn J* x), type(x)eset-operations, returns(x)-Boolean

The functional notation used for type and returns indicates that these are not simple slot values
of template x, but possibly have to be computed. The following pattern describes alli procedures that return a value of type v:

template n I type-procedure, returns-v

Control and dataflow order are specified by the ".", ., . and -. " patterns, analogous to

134 Appendix A

the forms for the '"I, "1", and " pattern variables discussed earlier.' Whether "-" refers to
requires a data or control flow ordering depends upon the context in which it occurs. Here is a
pattern that specifies all procedures that may be called before template x is executed:

template n I type-procedure, y.instance.of-n, {y -* x)

The dataflow examples below specify the first reference to a, the last reference to a, the template
that references both a and b, and the template that references a before it is output. The default
order for matching is execution order.

template n I (acreferents(n)),
template n I (aereferents(n))N
template n I referents(n)-{ahb}
template n I aereferentzs(n), [n -,* x), x.type-output, x.AIU-instance-a

We could also introduce a "-+-" pattern variable analogous to "..", "T", and "<>", but its utility
isn't clear.

A.6 Pragmatic References

Referring to a part of a program pragmatically, i.e., by its function or purpose, is probably the
most common and useful program reference technique when the user isn't dealing directly with
the program itself (e.g., by using an editor of some kind). However, this conclusion is based on
an examination of a small number of natural language program specification dialogs held by
only a few different people. Unfortunately, pragmatic references require domain knowledge, of
which PMB has little. The only way PMB can handle specifications such as "the output
statement that lists the updated database" is via trivial slot values that provide some domain
specific context:

template n I type-output, AIU.instance-database, fa I.* n}, a.user-name=update
template n I type-output, purpose-output-database

Each template currently has an optional user name slot, which takes an arbitrary (user defined)
string. A purpose slot could also be made optional for all templates, with the user or other
domain expert allowed to fill it in. The first example pattern above matches the output
operation that outputs information structure database and occurs below a template that is called
"update" by the user. The second example matches an output operation whose purpose is
"outputting the database".

"Convenience" pattern variables such as "t", ">", and "-" could easily be introduced. For
example, a t b would be defined to be equivalent to b I a. However, these forms add nothing to
the power of the language.

135

Appendix B. Example Rules

This appendix provides a sampler of the rules in PMB's knowledge base. About one-fourth of
the over 200 rules are listed. Each rule is represented by an English paraphrase, rather than
by the raw LISP code.

The example rules are listed by kind of knowledge (e.g., consistency checking) rather than
format of rule. Within a particular category of knowledge, the rules are listed in the order of
the class of the primary template being updated: (i) information structures (AIUs), (2) control
structures (ACUs), and (3) primitive operations (POPs). Compound demons have mnemonic
names, while other rules have numeric names. If a rule sets up a demon that is also listed in
this appendix, the rule description so states.

Recall that each rule is invoked in a context that includes a template name, slot name, and
value from the current fragment.

B.1 Completeness by Default and Questioning: Response Rules

Where response rules contain such words as "later", 'guarantee", and 'eventually", a demon is
being created.

B.1.I Response Rules for Information Structures

RULE057: If the current fragment defines a known AIU prototype to be of type primitive,
then store the type in the AIU prototype template in the model and ask if there is a specifier
slot, but assume it is a string for now.

RULE085: The current fragment defines the specifier of a primitive AIU prototype. If the
specifier is "numeric", then store that fact and ask about a numeric value slot.

RULE093: In the current fragment we have the definition of the type of an AlU prototype. If
the type is list, then create a collection, make it ordered, and ask about repetitions.

RULE081: We have the subparts of a plex. First make sure the subparts are in the form of a
list structure. Process each subpart, making sure that each subpart name is a unique (among
the subparts) literal atom and asking questions about each subpart. Then store the entire list of
subparts in the plex template.

B.1.2 Response Rules for Control Structures

RULE005: If the slot value specified in the current fragment is not already the name of a
template, then create a new template with that name and with a class of operational unit, ask
the type of the new template, and set up two-way linkage with the template that calls this
operational unit.

136 Appendix B

RULE010: If the operational unit is a composite, then store that type and ask about the
subparts and orderings, but assume sequential orderings for now.

RULE01 1: If the operational unit is a test, then store the type and ask about the condition,
probability that the condition is true, true action, and false action. Assume no false action.

RULE012: If the operational unit is a case, then store that type and ask for a list of case pairs.

RULE013: If the operational unit is a loop, then store that fact and ask about the
initialization, body, and exit pairs. Assume no initialization.

RULE023: We have the exit pairs of a loop. Make sure they are in a list, and then store the
list. Make sure each exit pair has exactly two elements, a predicate and a corresponding action.
For each exit pair, the predicate should be a Boolean expression occurring in the loop body
somewhere and should be unique among the exit predicates for this loop. Put the predicate
inside a test and add an assert-ext-condition (done by RULEI91). The action of the exit pair
may be any operational unit.

RULE001: If the name of the program model is legal, initialize the algorithm model and
associated demon space, set up the program model template using the name given, and ask for
the domain and top level ACU. Assume that the domain is "unknown".

B.1.3 Response Rules for Primitive Operations

Primitive Operations That Return Boolean Values

RULE 174: We are expecting a construct (either a primitive operation or an AlU instance) that
has a Boolean value. If its type is is-element, then store it and ask about the element, collection,
and probability slots. Eventually check for consistency between the element and collection slots
(done by IS-ELEMENT.CONSISTENCY).

RULE019 (discussed in Section 8.1.1): If the new operational unit is an is-subset, then store the
type and ask about the subcollection, collection, and probability slots. Also guarantee that
subcollection and collection have the same prototypic element (done by IS-SUBSET-
CONSISTENCY).

RULE222: If the Boolean expression is a truejfor-all, then store the type and ask about
referents, collection, condition, and probability. Later see if the true for-all can be transformed
into an issubset (done by TRUE-FOR.ALL.TOIS-SUBSET).

RULE228: We have the AIU instance that is used as the referent of a POP with a quantifier,

e.g., a truefor-all. Add cross-references and guarantee that the referent is only remembered
once and never forgotten or modified (done by RULE256 and RULE257). Finally, see if its
AIU prototype can be inferred from how it is used, by monitoring the where-referenced slot.

RULE275: We are expecting a Boolean POP. If its type is has-correspondent, then store the
type and ask for the correspondence, domain element, and probability slots. Eventually
guarantee that the domain element is of the same type as the domain AIU of the
correspondence silt.

Example Rules 137

RULE020: If the operational unit is an is5of-type, then store the type and ask about the value
to be checked, the AIU prototype, and the probability that the test is true.

RULE151: We have the value slot of an isof-type. If the template named as the value slot
doesn't exist yet, then create an alternative and ask the appropriate questions about it, create an
instance of it, create a remembered-value above it, and eventually guarantee that the AIU
prototype named in the is-of-type occurs somewhere in the alternative tree (done by IS-OF-
TYPE-CONSISTENCY).

RULE293: If the Boolean expression is a generic are-equal operator, then ask about the two
instances and the probability the test is true, and eventually decide how the are-equal should be
specialized (done by RULE300).

Primitive Operations That Return Non-Boolean Values

The three rules below are discussed in Section 8.1.1.

RULE096: We are expecting a POP or instance that has a collection as its value. If the
specified template exists and is a POP, then store two-way linkage and guarantee eventually
that the POP returns a collection.

RULE098: We are expecting a POP or instance that has a collection as its value. If the
template exists and is an AIU instance, then make sure eventually that it is a collection and
insert a remembered-value above it.

RULE099: We are expecting a POP or instance that has a collection as its value. If the
template doesn't exist yet, create a template of class "collection" and store two-way linkage
between it and the calling template.

Primitive Operations for Input/Output

RULE036: The operational unit is an input POP, so fill in the appropriate slots and then ask
questions about the AIU to be input, the source of the input, optional input format, and
prompt and reprompt strings. Assume that the source is the user and assume defaults for the
prompt and reprompt. Eventually copy the type-returned slot of this POP from its AIU slot.
Eventually construct a default format for the AlU and its sub-AIUs.

RULE148: If the prompt or reprompt is an existing AIU prototype, then eventually make sure
it is a string primitive with a value, and store the value as the prompt or reprompt.

RULE 146: If the prompt or reprompt is a new template, then create a string primitive, ask its
value, and eventually store the value in the prompt or reprompt slot.

RULE262: If the operational unit is an output, then store the type and ask questions about its

AIU instance, destination, and optional format. Assume that the destination is the user.
Eventually create a default format. Eventually see if the output can be transformed into an
inform-user (done by OUTPUT-TO-INFORM-USER).

-.. V

138 Appendix B

Primitive Operations That Alter the Flow of Control

The first rule below was used near the beginning of the CLASSIFY example in Chapter 4.

RULE149: We have the condition slot of an assert-exit.condition. First make sure it's a legal
name. Eventually check every loop that the assert-exit-condition is in to see that condition is
the name of an exit block in (at least) one of them (done by RULE194). Then store the
condition.

RULE238: We have the instance-of slot of a procedure-intance. If the procedure named as
the slot value doesn't exist, then create it and store cross-references between it and the instance.
Eventually store in the procedure-instance the type returned by the procedure.

RULE243: We have the list of bindings of a procedure-instance. If the list isn't empty, then
process each element of the list, store the bindings list in the procedure-instance, eventually
make sure there are the same number of bindings as parameters in the procedure (done by
PARAMETER-*-CONSISTENCY), and eventually guarantee that the types of bindings and
parameters agree.

B.2 Completeness by Inference

RULE 191: An exit condition of a loop is now known. Create an assert-exit-condition with the
name of the exit block as its label slot. Create a test with the exit condition as its condition slot
and the assert-extconditon as its true action.

INSERT-POP: If we have a POP below the current template, then store the name of the POP

INSERT-SELECT-ALTERNATIVE: If an is.of-type POP is in an exit condition of a loop
and the alternative referred to by the istof-type only has two possibilities, then insert a
seectalternative after the exit condition.

B.3 Completeness by Generating Cross-References

RULE051: We have a new reference to an instance. Update which ACU has this instance in
its list of relevant AIU instances. This ACU should be the least global ACU that contains
both the current reference to the instance and the current ACU listed in the ACU scope slot of
the instance. Also update the ACU scope slot in the instance template to point to this newly
computed ACU. Quantified POPs are considered to be ACUs when their referent in3tances
are being handled. There is an error if the new reference to the instance implies that the
instance is used both locally and globally to a procedure or quantified POP.

Example Rules 139

B.4 Consistency Checking

SAME-PRIMITIVE: Check that the two AIUs are primitives with the same specifier' subtype
(e.g., both strings).

RULEI94: Check that the exit condition of a loop is contained within that loop. When the L
current template knows what operational unit is above it, see if it is the loop we are looking for.
If not, move up eventually to the next higher operational unit and repeat the check. There is
an error if the program model template is reached.

EXIT-CONDITION-NOT-TEST-CONDITION: Ensure that the exit condition of a loop
isn't also the condition of a test (since RULE 191 puts the exit condition in a new test).

IS-ELEMENT-CONSISTENCY: In an is-element POP, make sure that the element slot is the
same type as the prototypic element of the collection slot.

IS-SUBSET-CONSISTENCY (discussed in Section 8.1.3): Make sure that the subcollection
and collection slots of an is-subet POP have the same prototypic elements.

RULE256: An AIU instance that is used as the quantifier in a POP such as a true-for-all has
been changed. Make sure that it is still remembered only once.

RULE257: An AIU instance that is used as the quantifier in a POP has been changed. Make
sure that it hasn't been forgotten or modified.

IS-OF-TYPE-CONSISTENCY: In an is-of-type POP, make sure that the specified AIU
prototype is somewhere in the alternative's subtree.

RULE103: We are expecting a template that returns a collection. If the template exists and
doesn't return a collection, then there is an error.

PARAMETER-*-CONSISTENCY: Ensure that a procedure-instance has the same number of
parameters as the procedure declaration.

B.5 Inconsistency Resolution

Both of the following rules deal with the resolution of prototype-instance ambiguity.

RULE267: An AIU instance is referenced. If a template with that name already exists and is
an AIU prototype, then create a new instance template for the prototype and insert a
remembered-value POP between the reference to the instance and the instance itself.

RULE276: An AIU prototype is referenced. However, the template referenced is currently an
AIU instance that doesn't have a prototype defined. Change the template into an AIU
prototype and ask questions about its type. Create a new instance template, make it the primary
instance of the prototype, copy information from the old instance to the new instance, update all

pointers to the old instance to point to the new one, and make all demons that were active in
the old instance active in the new instance instead.

140 Appendix B

B.6 Specialization of Generic Operators

RULE300: If the first argument of an aretequal generic operator is an alternative, then the

second argument should be a subtype of the alternative. Change the areeqzul into an
is.of.type. Finally, try to insert a stlect-aternativs in the appropriate place after the
is...ofy tp..

B.7 Canonization

TRUE-FOR-ALL-TO-IS-SUBSET: The current template is a true-for.all test. If it has the

form (trut.for.l x) ((x is-element a) implies (x is-element b)), for arbitrary expressions a and
b, then transform the entire true-forall expression into (a _ssubset b).

OUTPUT-TO-INFORM-USER (discussed in Section 8.1.3) If the output POP is merely
outputting a string constant to the user, then transform it into an lnformuser.

